Geometric limits of knot complements

被引:9
|
作者
Purcell, Jessica S. [1 ]
Souto, Juan [2 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
HYPERBOLIC; 3-MANIFOLDS; KLEINIAN-GROUPS; MANIFOLDS; CONVERGENCE; BOUNDARIES; CORES;
D O I
10.1112/jtopol/jtq020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any complete hyperbolic 3-manifold with finitely generated fundamental group, with a single topological end, and which embeds into S-3 is the geometric limit of a sequence of hyperbolic knot complements in S-3. In particular, we derive the existence of hyperbolic knot complements that contain balls of arbitrarily large radius. We also show that a complete hyperbolic 3-manifold with two convex cocompact ends cannot be a geometric limit of knot complements in S-3.
引用
收藏
页码:759 / 785
页数:27
相关论文
共 50 条
  • [21] Totally geodesic boundaries of knot complements
    Kent, RP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) : 3735 - 3744
  • [22] Closed incompressible surfaces in knot complements
    Finkelstein, E
    Moriah, Y
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) : 655 - 677
  • [23] Taut foliations of torus knot complements
    Nakae, Yasuharu
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2007, 14 (01): : 31 - 67
  • [24] Floer homology and splicing knot complements
    Eftekhary, Eaman
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (06): : 3155 - 3213
  • [25] Distance of heegaard splittings of knot complements
    Tomova, Maggy
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 236 (01) : 115 - 134
  • [26] Surgery groups of knot and link complements
    Aravinda, CS
    Farrell, FT
    Roushon, SK
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 400 - 406
  • [27] Critical point theory in knot complements
    Haddad, Julian
    Amster, Pablo
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 36 : 56 - 65
  • [28] Branches, quivers, and ideals for knot complements
    Ekholm, Tobias
    Gruen, Angus
    Gukov, Sergei
    Kucharski, Piotr
    Park, Sunghyuk
    Stosic, Marko
    Sulkowski, Piotr
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 177
  • [29] Immersed Mobius bands in knot complements
    Hughes, Mark C.
    Kim, Seungwon
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (02): : 1059 - 1072
  • [30] STABLE HOMOTOPY TYPE OF KNOT COMPLEMENTS
    HIRSCHHORN, PS
    ILLINOIS JOURNAL OF MATHEMATICS, 1979, 23 (01) : 128 - 134