Diletter circular codes over finite alphabets

被引:11
|
作者
Fimmel, Elena [1 ]
Michel, Christian J. [2 ]
Struengrnann, Lutz [1 ]
机构
[1] Univ Appl Sci, Fac Comp Sci, Inst Math Biol, D-68163 Mannheim, Germany
[2] Univ Strasbourg, CNRS, Theoret Bioinformat, 300 Blvd Sebastien Brant, F-67400 Illkirch Graffenstaden, France
关键词
Diletter circular code; Finite alphabet; Enumerative combinatorics; COMMA-FREE CODES; MAXIMAL DINUCLEOTIDE; DNA-SEQUENCES; PROTEIN; EVOLUTION; MOTIFS; GENES; EUKARYOTES; REGIONS;
D O I
10.1016/j.mbs.2017.10.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The graph approach of circular codes recently developed (Fimmel et al., 2016) allows here a detailed study of diletter circular codes over finite alphabets. A new class of circular codes is identified, strong comma-free codes. New theorems are proved with the diletter circular codes of maximal length in relation to (i) a characterisation of their graphs as acyclic tournaments; (ii) their explicit description; and (iii) the non-existence of other maximal diletter circular codes. The maximal lengths of paths in the graphs of the comma-free and strong comma-free codes are determined. Furthermore, for the first time, diletter circular codes are enumerated over finite alphabets. Biological consequences of dinucleotide circular codes are analysed with respect to their embedding in the trinucleotide circular code X identified in genes and to the periodicity modulo 2 observed in introns. An evolutionary hypothesis of circular codes is also proposed according to their combinatorial properties.
引用
收藏
页码:120 / 129
页数:10
相关论文
共 50 条
  • [11] Performance of universal codes over infinite alphabets
    Orlitsky, A
    Santhanam, NP
    DCC 2003: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2003, : 402 - 410
  • [12] Reversals and transpositions over finite alphabets
    Radcliffe, AJ
    Scott, AD
    Wilmer, EL
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (01) : 224 - 244
  • [13] Near-Optimal Finite-Length Scaling for Polar Codes over Large Alphabets
    Pfister, Henry D.
    Urbanke, Rudiger
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 215 - 219
  • [14] Near-Optimal Finite-Length Scaling for Polar Codes Over Large Alphabets
    Pfister, Henry D.
    Urbanke, Ruediger L.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (09) : 5643 - 5655
  • [15] New DNA Codes from Cyclic Codes over Mixed Alphabets
    Dinh, Hai Q.
    Pathak, Sachin
    Upadhyay, Ashish Kumar
    Yamaka, Woraphon
    MATHEMATICS, 2020, 8 (11) : 1 - 24
  • [16] A PRODUCT CONSTRUCTION FOR PERFECT CODES OVER ARBITRARY ALPHABETS
    PHELPS, KT
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (05) : 769 - 771
  • [17] Graded alphabets, circular codes, free Lie algebras and comma-free codes
    Perrin, Dominique
    Reutenauer, Christophe
    DISCRETE MATHEMATICS, 2021, 344 (01)
  • [18] Lowest density MDS codes over extension alphabets
    Louidor, Erez
    Roth, Ron M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (07) : 3186 - 3197
  • [19] On perfect codes over non prime power alphabets
    Heden, Olof
    ERROR-CORRECTING CODES, FINITE GEOMETRIES AND CRYPTOGRAPHY, 2010, 523 : 173 - 184
  • [20] Constacyclic codes over mixed alphabets and their applications in constructing new quantum codes
    Hai Q. Dinh
    Sachin Pathak
    Tushar Bag
    Ashish Kumar Upadhyay
    Woraphon Yamaka
    Quantum Information Processing, 2021, 20