Performance of universal codes over infinite alphabets

被引:0
|
作者
Orlitsky, A
Santhanam, NP
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is known that universal compression of strings generated by i.i.d. sources over infinite alphabets entails infinite per-symbol redundancy. Continuing previous work [1], we consider alternative compression schemes which decompose the description of such strings into a description of the symbols appearing of the string and a description of the arrangement the symbols form. We consider two descriptions of the symbol arrangement: shapes and patterns. Roughly speaking, shapes describe the relative magnitude of the symbols while patterns describe only the order in which they appear. We prove that the per-symbol worst-case redundancy of compressing shapes is a positive constant less than one, and that the per-symbol redundancy of compressing patterns diminishes to zero as the blocklength increases. We also mention some results on sequential pattern compression.
引用
收藏
页码:402 / 410
页数:9
相关论文
共 50 条
  • [1] Sliding block codes between shift spaces over infinite alphabets
    Goncalves, Daniel
    Sobottka, Marcelo
    Starling, Charles
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (17-18) : 2178 - 2191
  • [2] LANGUAGES OVER INFINITE ALPHABETS
    AUTEBERT, JM
    BEAUQUIER, J
    BOASSON, L
    DISCRETE APPLIED MATHEMATICS, 1980, 2 (01) : 1 - 20
  • [3] Counting Multiplicity over Infinite Alphabets
    Manuel, Amaldev
    Ramanujam, R.
    REACHABILITY PROBLEMS, PROCEEDINGS, 2009, 5797 : 141 - 153
  • [4] Tree automata over infinite alphabets
    Kaminski, Michael
    Tan, Tony
    PILLARS OF COMPUTER SCIENCE, 2008, 4800 : 386 - 423
  • [5] Variable Automata over Infinite Alphabets
    Grumberg, Orna
    Kupferman, Orna
    Sheinvald, Sarai
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2010, 6031 : 561 - +
  • [6] LDPC codes over mixed alphabets
    Ng, K. S.
    Armand, M. A.
    ELECTRONICS LETTERS, 2006, 42 (22) : 1290 - 1292
  • [7] Optimal prefix codes for infinite alphabets with nonlinear costs
    Baer, Michael B.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (03) : 1273 - 1286
  • [8] Existence of optimal prefix codes for infinite source alphabets
    Linder, T
    Tarokh, V
    Zeger, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) : 2026 - 2028
  • [9] Universal Coding for Memoryless Sources with Countably Infinite Alphabets
    Kudryashov, B. D.
    Porov, A. V.
    PROBLEMS OF INFORMATION TRANSMISSION, 2014, 50 (04) : 390 - 399
  • [10] Universal Coding on Infinite Alphabets: Exponentially Decreasing Envelopes
    Bontemps, Dominique
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (03) : 1466 - 1478