Monte Carlo video text segmentation

被引:0
|
作者
Chen, DT
Odobez, JM
Thiran, JP
机构
[1] Dalle Molle Inst Perceptual Artificial Intelligen, IDIAP, CH-1920 Martigny, Switzerland
[2] Swiss Fed Inst Technol, EPFL, Signal Proc Inst, ITS, CH-1015 Lausanne, Switzerland
关键词
particle filter; Bayesian filter; image segmentation; video OCR;
D O I
10.1142/S0218001405004216
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a probabilistic algorithm for segmenting and recognizing text embedded in video sequences based on adaptive thresholding using a Bayes filtering method. The algorithm approximates the posterior distribution of segmentation thresholds of video text by a set of weighted samples. The set of samples is initialized by applying a classical segmentation algorithm on the first video frame and further refined by random sampling under a temporal Bayesian framework. This framework allows us to evaluate a text image segmentor on the basis of recognition result instead of visual segmentation result, which is directly relevant to our character recognition task. Results on a database of 6944 images demonstrate the validity of the algorithm.
引用
收藏
页码:647 / 661
页数:15
相关论文
共 50 条
  • [41] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [42] Monte Carlo Tree Search with Options for General Video Game Playing
    de Waard, Maarten
    Roijers, Diederik M.
    Bakkes, Sander C. J.
    2016 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2016,
  • [43] Feature Selection for Text Clustering in Limited Memory Using Monte Carlo Wrapper
    Deolalikar, Vinay
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014,
  • [44] A New Gradient based Character Segmentation Method for Video Text Recognition
    Shivakumara, Palaiahnakote
    Bhowmick, Souvik
    Su, Bolan
    Tan, Chew Lim
    Pal, Umapada
    11TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR 2011), 2011, : 126 - 130
  • [45] News Video Indexing and Story Unit Segmentation using Text Cue
    Haloi, Pranabjyoti
    Gadde, Prathik
    Bhuyan, M. K.
    2019 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET 2019): ADVANCING WIRELESS AND MOBILE COMMUNICATIONS TECHNOLOGIES FOR 2020 INFORMATION SOCIETY, 2019, : 501 - 507
  • [46] Actor and Action Modular Network for Text-Based Video Segmentation
    Yang, Jianhua
    Huang, Yan
    Niu, Kai
    Huang, Linjiang
    Ma, Zhanyu
    Wang, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4474 - 4489
  • [47] Actor and Action Modular Network for Text-Based Video Segmentation
    Yang, Jianhua
    Huang, Yan
    Niu, Kai
    Huang, Linjiang
    Ma, Zhanyu
    Wang, Liang
    IEEE Transactions on Image Processing, 2022, 31 : 4474 - 4489
  • [48] Monte Carlo and Quasi-Monte Carlo for Statistics
    Owen, Art B.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 3 - 18
  • [49] Monte Carlo extension of quasi-Monte Carlo
    Owen, AB
    1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 571 - 577
  • [50] Improving Tissue Segmentation for Monte Carlo Dose Calculation Using DECT Data
    Di Salvio, A.
    Bedwani, S.
    Carrier, J.
    MEDICAL PHYSICS, 2014, 41 (06) : 476 - 476