Monte Carlo video text segmentation

被引:0
|
作者
Chen, DT
Odobez, JM
Thiran, JP
机构
[1] Dalle Molle Inst Perceptual Artificial Intelligen, IDIAP, CH-1920 Martigny, Switzerland
[2] Swiss Fed Inst Technol, EPFL, Signal Proc Inst, ITS, CH-1015 Lausanne, Switzerland
关键词
particle filter; Bayesian filter; image segmentation; video OCR;
D O I
10.1142/S0218001405004216
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a probabilistic algorithm for segmenting and recognizing text embedded in video sequences based on adaptive thresholding using a Bayes filtering method. The algorithm approximates the posterior distribution of segmentation thresholds of video text by a set of weighted samples. The set of samples is initialized by applying a classical segmentation algorithm on the first video frame and further refined by random sampling under a temporal Bayesian framework. This framework allows us to evaluate a text image segmentor on the basis of recognition result instead of visual segmentation result, which is directly relevant to our character recognition task. Results on a database of 6944 images demonstrate the validity of the algorithm.
引用
收藏
页码:647 / 661
页数:15
相关论文
共 50 条
  • [21] Segmentation Using Population based Markov Chain Monte Carlo
    Wang, Xiangrong
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 184 - 188
  • [22] Monte Carlo cluster refinement for noise robust image segmentation
    Wong, Alexander
    Wang, Xiao Yu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2012, 23 (07) : 984 - 994
  • [23] Monte Carlo Simulation and Clustering for Customer Segmentation in Business Organization
    Alamsyah, Andry
    Nurriz, Bellania
    2017 3RD INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY - COMPUTER (ICST), 2017, : 104 - 109
  • [24] Markov chain Monte Carlo based video tracking algorithm
    D. Kuplyakov
    E. Shalnov
    A. Konushin
    Programming and Computer Software, 2017, 43 : 224 - 229
  • [25] Monte Carlo based algorithm for fast preliminary video analysis
    Okarma, Krzysztof
    Lech, Piotr
    COMPUTATIONAL SCIENCE - ICCS 2008, PT 1, 2008, 5101 : 790 - 799
  • [26] Markov chain Monte Carlo based video tracking algorithm
    Kuplyakov, D.
    Shalnov, E.
    Konushin, A.
    PROGRAMMING AND COMPUTER SOFTWARE, 2017, 43 (04) : 224 - 229
  • [27] Extracting Knowledge from Web Text with Monte Carlo Tree Search
    Liu, Guiliang
    Li, Xu
    Wang, Jiakang
    Sun, Mingming
    Li, Ping
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2585 - 2591
  • [28] Decrypting classical cipher text using Markov chain Monte Carlo
    Jian Chen
    Jeffrey S. Rosenthal
    Statistics and Computing, 2012, 22 : 397 - 413
  • [29] Decrypting classical cipher text using Markov chain Monte Carlo
    Chen, Jian
    Rosenthal, Jeffrey S.
    STATISTICS AND COMPUTING, 2012, 22 (02) : 397 - 413
  • [30] Activity Recognition using Video Event Segmentation with Text (VEST)
    Holloway, Hillary
    Jones, Eric K.
    Kaluzniacki, Andrew
    Blasch, Erik
    Tierno, Jorge
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXIII, 2014, 9091