A Multilevel Stochastic Collocation Algorithm for Optimization of PDEs with Uncertain Coefficients

被引:26
|
作者
Kouri, D. P. [1 ]
机构
[1] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS-1320, Albuquerque, NM 87185 USA
来源
关键词
PDE optimization; multilevel; uncertainty quantification; sparse grids; PARTIAL-DIFFERENTIAL-EQUATIONS; TRUST-REGION METHODS; MULTIGRID METHODS; INFORMATION;
D O I
10.1137/130915960
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we apply the MG/OPT framework to a multilevel-in-sample-space discretization of optimization problems governed by PDEs with uncertain coefficients. The MG/OPT algorithm is a template for the application of multigrid to deterministic PDE optimization problems. We employ MG/OPT to exploit the hierarchical structure of sparse grids in order to formulate a multilevel stochastic collocation algorithm. The algorithm is provably first-order convergent under standard assumptions on the hierarchy of discretized objective functions as well as on the optimization routines used as pre- and postsmoothers. We present explicit bounds on the total number of PDE solves and an upper bound on the error for one V-cycle of the MG/OPT algorithm applied to a linear quadratic control problem. We provide numerical results that confirm the theoretical bound on the number of PDE solves and show a dramatic reduction in the total number of PDE solves required to solve these optimization problems when compared with standard optimization routines applied to a fixed sparse-grid discretization of the same problem.
引用
收藏
页码:55 / 81
页数:27
相关论文
共 50 条
  • [31] A stochastic optimization algorithm for the supply vessel planning problem under uncertain demand and uncertain weather conditions
    Santos, A. M. P.
    Fagerholt, K.
    Soares, C. Guedes
    OCEAN ENGINEERING, 2023, 278
  • [32] Stochastic Collocation Methods for Nonlinear Parabolic Equations with Random Coefficients
    Barajas-Solano, David A.
    Tartakovsky, Daniel M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 475 - 494
  • [33] MG/OPT AND MULTILEVEL MONTE CARLO FOR ROBUST OPTIMIZATION OF PDEs
    Van Barel, Andreas
    Vandewalle, Stefan
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 1850 - 1876
  • [34] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    A. L. Teckentrup
    R. Scheichl
    M. B. Giles
    E. Ullmann
    Numerische Mathematik, 2013, 125 : 569 - 600
  • [35] Multi-index Stochastic Collocation Convergence Rates for Random PDEs with Parametric Regularity
    Abdul-Lateef Haji-Ali
    Fabio Nobile
    Lorenzo Tamellini
    Raúl Tempone
    Foundations of Computational Mathematics, 2016, 16 : 1555 - 1605
  • [36] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    Teckentrup, A. L.
    Scheichl, R.
    Giles, M. B.
    Ullmann, E.
    NUMERISCHE MATHEMATIK, 2013, 125 (03) : 569 - 600
  • [37] Multi-index Stochastic Collocation Convergence Rates for Random PDEs with Parametric Regularity
    Haji-Ali, Abdul-Lateef
    Nobile, Fabio
    Tamellini, Lorenzo
    Tempone, Raul
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (06) : 1555 - 1605
  • [38] A Multiscale Multilevel Monte Carlo Method for Multiscale Elliptic PDEs with Random Coefficients
    Junlong Lyu
    Zhiwen Zhang
    CommunicationsinMathematicalResearch, 2020, 36 (02) : 154 - 192
  • [39] Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients
    Ali, Ahmad Ahmad
    Ullmann, Elisabeth
    Hinze, Michael
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 466 - 492
  • [40] Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs
    Dinh Dung
    SBORNIK MATHEMATICS, 2023, 214 (04) : 479 - 515