A Multilevel Stochastic Collocation Algorithm for Optimization of PDEs with Uncertain Coefficients

被引:26
|
作者
Kouri, D. P. [1 ]
机构
[1] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS-1320, Albuquerque, NM 87185 USA
来源
关键词
PDE optimization; multilevel; uncertainty quantification; sparse grids; PARTIAL-DIFFERENTIAL-EQUATIONS; TRUST-REGION METHODS; MULTIGRID METHODS; INFORMATION;
D O I
10.1137/130915960
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we apply the MG/OPT framework to a multilevel-in-sample-space discretization of optimization problems governed by PDEs with uncertain coefficients. The MG/OPT algorithm is a template for the application of multigrid to deterministic PDE optimization problems. We employ MG/OPT to exploit the hierarchical structure of sparse grids in order to formulate a multilevel stochastic collocation algorithm. The algorithm is provably first-order convergent under standard assumptions on the hierarchy of discretized objective functions as well as on the optimization routines used as pre- and postsmoothers. We present explicit bounds on the total number of PDE solves and an upper bound on the error for one V-cycle of the MG/OPT algorithm applied to a linear quadratic control problem. We provide numerical results that confirm the theoretical bound on the number of PDE solves and show a dramatic reduction in the total number of PDE solves required to solve these optimization problems when compared with standard optimization routines applied to a fixed sparse-grid discretization of the same problem.
引用
收藏
页码:55 / 81
页数:27
相关论文
共 50 条
  • [21] A Communication-Efficient Algorithm for Federated Multilevel Stochastic Compositional Optimization
    Yang, Shuoguang
    Li, Fengpei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 2333 - 2347
  • [22] Backward doubly stochastic differential equations with random coefficients and quasilinear stochastic PDEs
    Wen, Jiaqiang
    Shi, Yufeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 476 (01) : 86 - 100
  • [23] Uncertain multilevel programming: Algorithm and applications
    Liu, Baoding
    Yao, Kai
    COMPUTERS & INDUSTRIAL ENGINEERING, 2015, 89 : 235 - 240
  • [24] Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients
    Cliffe, K. A.
    Giles, M. B.
    Scheichl, R.
    Teckentrup, A. L.
    COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 3 - 15
  • [25] Parallel Multilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coefficients
    Zakharov, Petr
    Iliev, Oleg
    Mohring, Jan
    Shegunov, Nikolay
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 463 - 472
  • [26] A TRUST-REGION ALGORITHM WITH ADAPTIVE STOCHASTIC COLLOCATION FOR PDE OPTIMIZATION UNDER UNCERTAINTY
    Kouri, D. P.
    Heinkenschloss, M.
    Ridzal, D.
    Waanders, B. G. van Bloemen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04): : A1847 - A1879
  • [27] A Multilevel Stochastic Collocation Method for Schrodinger Equations with a Random Potential
    Jahnke, Tobias
    Stein, Benny
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (04): : 1753 - 1780
  • [28] An adaptive sparse grid method for elliptic PDEs with stochastic coefficients
    Erhel, J.
    Mghazli, Z.
    Oumouni, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 297 : 392 - 407
  • [29] Uncertain eigenvalue analysis by the sparse grid stochastic collocation method
    J. C. Lan
    X. J. Dong
    Z. K. Peng
    W. M. Zhang
    G. Meng
    Acta Mechanica Sinica, 2015, 31 : 545 - 557
  • [30] Uncertain eigenvalue analysis by the sparse grid stochastic collocation method
    Lan, J. C.
    Dong, X. J.
    Peng, Z. K.
    Zhang, W. M.
    Meng, G.
    ACTA MECHANICA SINICA, 2015, 31 (04) : 545 - 557