Optimal perturbation iteration technique for solving nonlinear Volterra-Fredholm integral equations

被引:6
|
作者
Deniz, Sinan [1 ]
机构
[1] Manisa Celal Bayar Univ, Fac Art & Sci, Dept Math, TR-45140 Manisa, Turkey
关键词
convergence-control parameter; optimal perturbation iteration method; residual error; Volterra-Fredholm integral equations;
D O I
10.1002/mma.6312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the optimal perturbation iteration method is briefly presented and employed for solving nonlinear Volterra-Fredholm integral equations. The classical form of the optimal perturbation iteration method is modified, and new algorithms are constructed for integral equations. Comparing our new algorithms with some earlier papers proved the excellent accuracy of the newly proposed technique.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations using Taylor Expansion Method
    Didgar, Mohsen
    Vahidi, Alireza
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (02): : 31 - 50
  • [42] Solving nonlinear Volterra-Fredholm integro-differential equations using He's variational iteration method
    Araghi, M. A. Fariborzi
    Behzadi, Sh. Sadigh
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (04) : 829 - 838
  • [43] He's homotopy perturbation method: An effective tool for solving a nonlinear system of two-dimensional Volterra-Fredholm integral equations
    Babolian, E.
    Dastani, N.
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 1233 - 1244
  • [44] Three-dimensional triangular functions and their applications for solving nonlinear mixed Volterra-Fredholm integral equations
    Mirzaee, Farshid
    Hadadiyan, Elham
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (03) : 2943 - 2952
  • [45] Improved composite methods using radial basis functions for solving nonlinear Volterra-Fredholm integral equations
    Takouk, Dalila
    Zeghdane, Rebiha
    Lakehali, Belkacem
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2024, 19 (02) : 93 - 106
  • [46] Collocation method for solving two-dimensional nonlinear Volterra-Fredholm integral equations with convergence analysis
    Mi, Jian
    Huang, Jin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 428
  • [47] Solving Fractional Volterra-Fredholm Integro-Differential Equations via A** Iteration Method
    Ofem, Austine Efut
    Hussain, Aftab
    Joseph, Oboyi
    Udo, Mfon Okon
    Ishtiaq, Umar
    Al Sulami, Hamed
    Chikwe, Chukwuka Fernando
    AXIOMS, 2022, 11 (09)
  • [48] A global method for solving second-kind Volterra-Fredholm integral equations
    Fermo, Luisa
    Mezzanotte, Domenico
    Occorsio, Donatella
    BIT NUMERICAL MATHEMATICS, 2025, 65 (02)
  • [49] Solving Volterra-Fredholm integral equations by non-polynomial spline functions
    Salim, S. H.
    Jwamer, K. H. F.
    Saeed, R. K.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES, 2024, 116 (04): : 170 - 184
  • [50] Block-by-Block Method for Solving Nonlinear Volterra-Fredholm Integral Equation
    Badr, Abdallah A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010