Optimal perturbation iteration technique for solving nonlinear Volterra-Fredholm integral equations

被引:6
|
作者
Deniz, Sinan [1 ]
机构
[1] Manisa Celal Bayar Univ, Fac Art & Sci, Dept Math, TR-45140 Manisa, Turkey
关键词
convergence-control parameter; optimal perturbation iteration method; residual error; Volterra-Fredholm integral equations;
D O I
10.1002/mma.6312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the optimal perturbation iteration method is briefly presented and employed for solving nonlinear Volterra-Fredholm integral equations. The classical form of the optimal perturbation iteration method is modified, and new algorithms are constructed for integral equations. Comparing our new algorithms with some earlier papers proved the excellent accuracy of the newly proposed technique.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations
    Mirzaee, Farshid
    Hoseini, Seyede Fatemeh
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 637 - 644
  • [32] A Projection Method for Solving Nonlinear Volterra-Fredholm Integral Equations using Legendre Hybrid Functions
    Roodaki, M.
    JafariBehbahani, Z.
    JOURNAL OF MATHEMATICAL EXTENSION, 2013, 7 (03) : 77 - 93
  • [33] A study of some effective techniques for solving Volterra-Fredholm integral equations
    Hamoud, Ahmed A.
    Mohammed, Nedal M.
    Ghadle, Kirtiwant P.
    Journal of Automation and Information Sciences, 2019, 26 (05) : 389 - 406
  • [34] A Simple Approach to Volterra-Fredholm Integral Equations
    He, Ji-Huan
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 : 1184 - 1186
  • [35] Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations
    Yazdani, S.
    Hadizadeh, M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (02): : 305 - 322
  • [36] INTRODUCING A NEW APPROACH TO SOLVE NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
    Tofigh, A. A. Cheraghi
    Ezzati, R.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 10 (02): : 175 - 187
  • [37] An efficient computational method for nonlinear mixed Volterra-Fredholm integral equations
    Afiatdoust, F.
    Heydari, M. H.
    Hosseini, M. M.
    Bayram, M.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, : 1777 - 1790
  • [38] An Accelerated Homotopy Perturbation Method for Solving Nonlinear Two-Dimensional Volterra-Fredholm Integrodifferential Equations
    Hendi, F. A.
    Al-Qarni, M. M.
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [39] ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT
    Bacotiu, Claudia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2009, 54 (01): : 29 - 41
  • [40] An Algorithm for the Solution of Nonlinear Volterra-Fredholm Integral Equations with a Singular Kernel
    Abusalim, Sahar M.
    Abdou, Mohamed A.
    Nasr, Mohamed E.
    Abdel-Aty, Mohamed A.
    FRACTAL AND FRACTIONAL, 2023, 7 (10)