Analysis of SMOS sea surface salinity data using DINEOF

被引:55
|
作者
Alvera-Azcarate, Aida [1 ]
Barth, Alexander [1 ,2 ]
Parard, Gaelle [1 ]
Beckers, Jean-Marie [1 ]
机构
[1] Univ Liege, AGO GHER MARE, Allee Six Aout 17, B-4000 Liege, Belgium
[2] FRS FNRS Natl Fund Sci Res, Brussels, Belgium
关键词
SATELLITE DATA; AMAZON PLUME; OCEAN; RECONSTRUCTION; TEMPERATURE;
D O I
10.1016/j.rse.2016.02.044
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An analysis of daily Sea Surface Salinity (SSS) at 0.15 degrees x 0.15 degrees spatial resolution from the Soil Moisture and Ocean Salinity (SMOS) satellite mission using DINEOF (Data Interpolating Empirical Orthogonal Functions) is presented. DINEOF allows reconstructing missing data using a truncated EOF basis, while reducing the amount of noise and errors in geophysical datasets. This work represents a first application of DINEOF to SMOS SSS. Results show that a reduction of the error and the amount of noise is obtained in the DINEOF SSS data compared to the initial SMOS SSS data. Errors associated to the edge of the swath are detected in 2 EOFs and effectively removed from the final data, avoiding removing the data at the edges of the swath in the initial dataset. The final dataset presents a centered root mean square error of 0.2 in open waters when comparing with thermosalinograph data at their original spatial and temporal resolution. Constant biases present near land masses, large scale biases and latitudinal biases cannot be corrected with DINEOF because persistent signals are retained in high order EOFs, and therefore these need to be corrected separately. The signature of the Douro and Gironde rivers is detected in the DINEOF SSS. The minimum SSS observed in the Gironde plume corresponds to a flood event in June 2013, and the shape and size of the Douro river shows a good agreement with chlorophyll-a satellite data. These examples show the capacity of DINEOF to remove noise and provide a full SSS dataset at a high temporal and spatial resolution with reduced error, and the possibility to retrieve physical signals in zones with high initial errors. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [31] Precipitation Estimates from SMOS Sea-Surface Salinity
    Supply, A.
    Boutin, J.
    Vergely, J. -L.
    Martin, N.
    Hasson, A.
    Reverdin, G.
    Mallet, C.
    Viltard, N.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 : 103 - 119
  • [32] SMOS: The Challenging Sea Surface Salinity Measurement From Space
    Font, Jordi
    Camps, Adriano
    Borges, Andres
    Martin-Neira, Manuel
    Boutin, Jacqueline
    Reul, Nicolas
    Kerr, Yann H.
    Hahne, Achim
    Mecklenburg, Susanne
    PROCEEDINGS OF THE IEEE, 2010, 98 (05) : 649 - 665
  • [33] Preliminary validation of SMOS sea surface salinity measurements in the South China Sea
    Ren Yongzheng
    Dong Qing
    He Mingxia
    CHINESE JOURNAL OF OCEANOLOGY AND LIMNOLOGY, 2015, 33 (01): : 262 - 271
  • [34] Preliminary validation of SMOS sea surface salinity measurements in the South China Sea
    任永政
    董庆
    贺明霞
    Journal of Oceanology and Limnology, 2015, (01) : 262 - 271
  • [35] On the potential of data assimilation to generate SMOS-Level 4 maps of sea surface salinity
    Hoareau, Nina
    Umbert, Marta
    Martinez, Justino
    Turiel, Antonio
    Ballabrera-Poy, Joaquim
    REMOTE SENSING OF ENVIRONMENT, 2014, 146 : 188 - 200
  • [36] First SMOS Sea Surface Salinity dedicated products over the Baltic Sea
    Gonzalez-Gambau, Veronica
    Olmedo, Estrella
    Turiel, Antonio
    Gonzalez-Haro, Cristina
    Garcia-Espriu, Aina
    Martinez, Justino
    Alenius, Pekka
    Tuomi, Laura
    Catany, Rafael
    Arias, Manuel
    Gabarro, Carolina
    Hoareau, Nina
    Umbert, Marta
    Sabia, Roberto
    Fernandez, Diego
    EARTH SYSTEM SCIENCE DATA, 2022, 14 (05) : 2343 - 2368
  • [37] Preliminary validation of SMOS sea surface salinity measurements in the South China Sea
    Yongzheng Ren
    Qing Dong
    Mingxia He
    Chinese Journal of Oceanology and Limnology, 2015, 33 : 262 - 271
  • [38] The SMOS L3 Mapping Algorithm for Sea Surface Salinity
    Jorda, Gabriel
    Gomis, Damia
    Talone, Marco
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (03): : 1032 - 1051
  • [39] Errors in SMOS Sea Surface Salinity and their dependency on a priori wind speed
    Yin, Xiaobin
    Boutin, Jacqueline
    Martin, Nicolas
    Spurgeon, Paul
    Vergely, Jean-Luc
    Gaillard, Fabienne
    REMOTE SENSING OF ENVIRONMENT, 2014, 146 : 159 - 171
  • [40] Sea surface salinity retrieval throughout a SMOS half-orbit using neural networks
    Ammar, A.
    Labroue, S.
    Obligis, E.
    Mejia, C.
    Thiria, S.
    Crepon, M.
    2006 IEEE MICRORAD, 2006, : 103 - +