Analysis of SMOS sea surface salinity data using DINEOF

被引:55
|
作者
Alvera-Azcarate, Aida [1 ]
Barth, Alexander [1 ,2 ]
Parard, Gaelle [1 ]
Beckers, Jean-Marie [1 ]
机构
[1] Univ Liege, AGO GHER MARE, Allee Six Aout 17, B-4000 Liege, Belgium
[2] FRS FNRS Natl Fund Sci Res, Brussels, Belgium
关键词
SATELLITE DATA; AMAZON PLUME; OCEAN; RECONSTRUCTION; TEMPERATURE;
D O I
10.1016/j.rse.2016.02.044
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An analysis of daily Sea Surface Salinity (SSS) at 0.15 degrees x 0.15 degrees spatial resolution from the Soil Moisture and Ocean Salinity (SMOS) satellite mission using DINEOF (Data Interpolating Empirical Orthogonal Functions) is presented. DINEOF allows reconstructing missing data using a truncated EOF basis, while reducing the amount of noise and errors in geophysical datasets. This work represents a first application of DINEOF to SMOS SSS. Results show that a reduction of the error and the amount of noise is obtained in the DINEOF SSS data compared to the initial SMOS SSS data. Errors associated to the edge of the swath are detected in 2 EOFs and effectively removed from the final data, avoiding removing the data at the edges of the swath in the initial dataset. The final dataset presents a centered root mean square error of 0.2 in open waters when comparing with thermosalinograph data at their original spatial and temporal resolution. Constant biases present near land masses, large scale biases and latitudinal biases cannot be corrected with DINEOF because persistent signals are retained in high order EOFs, and therefore these need to be corrected separately. The signature of the Douro and Gironde rivers is detected in the DINEOF SSS. The minimum SSS observed in the Gironde plume corresponds to a flood event in June 2013, and the shape and size of the Douro river shows a good agreement with chlorophyll-a satellite data. These examples show the capacity of DINEOF to remove noise and provide a full SSS dataset at a high temporal and spatial resolution with reduced error, and the possibility to retrieve physical signals in zones with high initial errors. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [21] Issues about retrieving sea surface salinity in coastal areas from SMOS data
    Zinc, Sonia
    Boutin, Jacqueline
    Waldteufel, Philippe
    Vergely, Jean-Luc
    Pellarin, Thierry
    Lazure, Pascal
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (07): : 2061 - 2072
  • [22] Retrieved sea surface salinity dependence on multisource auxiliary data within the SMOS mission
    Sabia, Roberto
    Camps, Adriano
    Vall-llossera, Merce
    Reul, Nicolas
    2006 IEEE MICRORAD, 2006, : 109 - +
  • [23] A coordinated retrieval method for sea surface salinity based on SMOS and ocean color data
    Chen, Peng
    Wang, Tianyu
    Mao, Zhihua
    Bai, Yan
    Hao, Zengzhou
    REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2016, 2016, 9999
  • [24] Impact on sea surface salinity retrieval of different auxiliary data within the SMOS mission
    Sabia, Roberto
    Camps, Adriano
    Vall-Ilossera, Merce
    Reul, Nicolas
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10): : 2769 - 2778
  • [25] Retrieved sea surface salinity spatial variability using high resolution data within the Soil Moisture and Ocean Salinity (SMOS) mission
    Sabia, Roberto
    Camps, Adriano
    Gommenginger, Christine
    Srokosz, Meric
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1330 - 1333
  • [26] Performance evaluation of SMOS sea surface salinity observations in retrieving salinity profiles
    Chen, Jian
    Zhang, Ren
    Wang, Luhua
    Wang, Gongjie
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING (RSETE 2013), 2013, 31 : 677 - 680
  • [27] SMOS Sea Surface Salinity signals of tropical instability waves
    Yin, Xiaobin
    Boutin, Jacqueline
    Reverdin, Gilles
    Lee, Tong
    Arnault, Sabine
    Martin, Nicolas
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (11) : 7811 - 7826
  • [28] SMOS sea surface salinity prototype processor:: Algorithm validation
    Zine, S.
    Boutin, J.
    Font, J.
    Talone, M.
    Gabarro, C.
    Reul, N.
    Tenerelli, J.
    Waldteufel, P.
    Petitcolin, F.
    Vergely, J. -L.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3955 - +
  • [29] REVISED MITIGATION OF SYSTEMATIC ERRORS IN SMOS SEA SURFACE SALINITY
    Boutin, J.
    Vergely, J. L.
    Marchand, S.
    Kolodziejczyk, N.
    Reul, N.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5640 - 5643
  • [30] ARCTIC SEA SURFACE SALINITY RETRIEVAL FROM SMOS MEASURES
    Martinez, Justino
    Gabarro, Carolina
    Olmedo, Estrella
    Gonzalez-Gambau, Veronica
    Gonzalez-Haro, Cristina
    Turiel, Antonio
    Sabia, Roberto
    Tang, Wenquing
    Yueh, Simon
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8154 - 8157