A posteriori error estimators for linear reduced-order models using Krylov-based integrators

被引:13
|
作者
Amsallem, D. [1 ]
Hetmaniuk, U. [2 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
projection-based model reduction; Petrov-Galerkin projection; error estimation; Krylov-based integrator; off-line; online decomposition; PROPER ORTHOGONAL DECOMPOSITION; COMPUTATIONAL-FLUID-DYNAMICS; REAL-TIME SOLUTION; BASIS APPROXIMATION; REDUCTION; EQUATIONS; SYSTEMS;
D O I
10.1002/nme.4753
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reduced-order models for linear time-invariant dynamical systems are considered, and the error between the full-order model and the reduced-order model solutions is characterized. Based on the analytical representation of the error, an a posteriori error indicator is proposed that combines a Krylov-based exponential integrator and an a posteriori residual-based estimate. Numerical experiments illustrate the quality of the error estimator. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1238 / 1261
页数:24
相关论文
共 50 条
  • [41] WORST-CASE ERROR ANALYSIS OF REDUCED-ORDER MODELS OF DISCRETE LINEAR TIME-INVARIANT SYSTEMS
    LASTMAN, GJ
    SINHA, NK
    CONTROL-THEORY AND ADVANCED TECHNOLOGY, 1989, 5 (04): : 629 - 639
  • [42] Design of Optimal Linear Reduced-Order Observers for Suppressing Transient Estimation Error
    Chou, Fu-, I
    Cheng, Ming-Yang
    IETE JOURNAL OF RESEARCH, 2021, 67 (06) : 935 - 944
  • [43] Domain Decomposition Strategy for Combining Nonlinear and Linear Reduced-Order Models
    Iyengar, Nikhil
    Rajaram, Dushhyanth
    Mavris, Dimitri
    AIAA JOURNAL, 2024, 62 (04) : 1375 - 1389
  • [44] Proper orthogonal decomposition versus Krylov subspace methods in reduced-order energy-converter models
    Hasan, M. D. Rokibul
    Sabariego, Ruth V.
    Geuzaine, Christophe
    Paquay, Yannick
    2016 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON), 2016,
  • [45] AN IMPROVED ERROR ESTIMATE FOR REDUCED-ORDER MODELS OF DISCRETE-TIME-SYSTEMS
    HINRICHSEN, D
    PRITCHARD, AJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (03) : 317 - 320
  • [46] Reduced-order modelling based on non-linear modes
    Mazzilli, Carlos E. N.
    Goncalves, Paulo B.
    Franzini, Guilherme R.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 214
  • [47] Collaborative Control of DFIG System During Network Unbalance Using Reduced-Order Generalized Integrators
    Cheng, Peng
    Nian, Heng
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2015, 30 (02) : 453 - 464
  • [48] An adaptive sampling algorithm for reduced-order models using Isomap
    Halder, Rakesh
    Fidkowski, Krzysztof J.
    Maki, Kevin J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (08)
  • [49] CONTROL OF LARGE SPACE STRUCTURES USING REDUCED-ORDER MODELS
    RAMAKRISHNAN, JV
    RAO, SV
    KOVAL, LR
    CONTROL-THEORY AND ADVANCED TECHNOLOGY, 1991, 7 (01): : 73 - 100
  • [50] Calibration of POD reduced-order models using Tikhonov regularization
    Cordier, L.
    Abou El Majd, B.
    Favier, J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (02) : 269 - 296