Proper orthogonal decomposition versus Krylov subspace methods in reduced-order energy-converter models

被引:0
|
作者
Hasan, M. D. Rokibul [1 ]
Sabariego, Ruth V. [1 ]
Geuzaine, Christophe [2 ]
Paquay, Yannick [3 ]
机构
[1] Katholieke Univ Leuven, EnergyVille, Leuven, Belgium
[2] Univ Liege, ACE, Liege, Belgium
[3] FRS FNRS, Brussels, Belgium
关键词
Reduced-order model; proper orthogonal decomposition; Krylov subspace methods; finite elements; eddy currents; TRANSFORMERS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, the proper orthogonal decomposition and the Arnoldi-based Krylov subspace methods are applied to the magnetodynamic finite element analysis of power electronic converters. The performance of these two model order reduction techniques is compared both in frequency and time domain. Moreover, two original, adaptive and automated greedy snapshots selection methods are investigated using either local or global quantities for selecting the snapshots (frequencies or time steps).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Constrained reduced-order models based on proper orthogonal decomposition
    Reddy, Sohail R.
    Freno, Brian A.
    Cizmas, Paul G. A.
    Gokaltun, Seckin
    McDaniel, Dwayne
    Dulikravich, George S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 18 - 34
  • [2] A New Closure Strategy for Proper Orthogonal Decomposition Reduced-Order Models
    Akhtar, Imran
    Wang, Zhu
    Borggaard, Jeff
    Iliescu, Traian
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (03):
  • [3] Acceleration techniques for reduced-order models based on proper orthogonal decomposition
    Cizmas, Paul G. A.
    Richardson, Brian R.
    Brenner, Thomas A.
    O'Brien, Thomas J.
    Breault, Ronald W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (16) : 7791 - 7812
  • [4] Bayesian proper orthogonal decomposition for learnable reduced-order models with uncertainty quantification
    Boluki S.
    Dadaneh S.Z.
    Dougherty E.R.
    Qian X.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1162 - 1173
  • [5] A REDUCED-ORDER APPROACH OF DISTRIBUTED PARAMETER MODELS USING PROPER ORTHOGONAL DECOMPOSITION
    Valbuena, M.
    Sarabia, D.
    de Prada, C.
    21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 26 - 30
  • [6] Krylov-subspace methods for reduced-order modeling in circuit simulation
    Freund, RW
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 123 (1-2) : 395 - 421
  • [7] Passive reduced-order modeling via Krylov-subspace methods
    Freund, RW
    PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 2000, : 261 - 266
  • [8] Proper orthogonal decomposition reduced-order model of the global oceans
    Kitsios, Vassili
    Cordier, Laurent
    O'Kane, Terence J.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2024, 38 (05) : 707 - 727
  • [9] Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition
    Hay, Alexander
    Borggaard, Jeffrey T.
    Pelletier, Dominique
    JOURNAL OF FLUID MECHANICS, 2009, 629 : 41 - 72
  • [10] HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION
    Williams, Matthew O.
    Schmid, Peter J.
    Kutz, J. Nathan
    MULTISCALE MODELING & SIMULATION, 2013, 11 (02): : 522 - 544