Proper orthogonal decomposition versus Krylov subspace methods in reduced-order energy-converter models

被引:0
|
作者
Hasan, M. D. Rokibul [1 ]
Sabariego, Ruth V. [1 ]
Geuzaine, Christophe [2 ]
Paquay, Yannick [3 ]
机构
[1] Katholieke Univ Leuven, EnergyVille, Leuven, Belgium
[2] Univ Liege, ACE, Liege, Belgium
[3] FRS FNRS, Brussels, Belgium
关键词
Reduced-order model; proper orthogonal decomposition; Krylov subspace methods; finite elements; eddy currents; TRANSFORMERS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, the proper orthogonal decomposition and the Arnoldi-based Krylov subspace methods are applied to the magnetodynamic finite element analysis of power electronic converters. The performance of these two model order reduction techniques is compared both in frequency and time domain. Moreover, two original, adaptive and automated greedy snapshots selection methods are investigated using either local or global quantities for selecting the snapshots (frequencies or time steps).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Developing a Reduced-Order Model of Nonsynchronous Vibration in Turbomachinery Using Proper-Orthogonal Decomposition Methods
    Clark, Stephen T.
    Besem, Fanny M.
    Kielb, Robert E.
    Thomas, Jeffrey P.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2015, 137 (05):
  • [22] Parameterized Reduced-Order Models for Probabilistic Analysis of Thermal Protection System Based on Proper Orthogonal Decomposition
    Zhang, Kun
    Yao, Jianyao
    Zhu, Wenxiang
    Cao, Zhifu
    Li, Teng
    Xin, Jianqiang
    AEROSPACE, 2024, 11 (04)
  • [23] A novel reduced-order algorithm for rational models based on Arnoldi process and Krylov subspace
    Chen, Jing
    Huang, Biao
    Gan, Min
    Chen, C. L. Philip
    AUTOMATICA, 2021, 129
  • [24] Reduced-order model development using proper orthogonal decomposition and Volterra theory
    Lucia, DJ
    Beran, PS
    AIAA JOURNAL, 2004, 42 (06) : 1181 - 1190
  • [25] An efficient proper orthogonal decomposition based reduced-order model for compressible flows
    Krath, Elizabeth H.
    Carpenter, Forrest L.
    Cizmas, Paul G. A.
    Johnston, David A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426 (426)
  • [26] Reduced-order spectral data modeling based on local proper orthogonal decomposition
    Cho, Woon
    Sahyoun, Samir
    Djouadi, Seddik M.
    Koschan, Andreas
    Abidi, Mongi A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (05) : 733 - 740
  • [27] A reduced-order approach for optimal control of fluids using proper orthogonal decomposition
    Ravindran, SS
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 34 (05) : 425 - 448
  • [28] Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition
    Kunisch, K
    Volkwein, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (02) : 345 - 371
  • [29] Proper Orthogonal Decomposition for Reduced-Order Thermal Solution in Hypersonic Aerothermoelastic Simulations
    Falkiewicz, Nathan J.
    Cesnik, Carlos E. S.
    AIAA JOURNAL, 2011, 49 (05) : 994 - 1009
  • [30] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    Jorn F. M. van Doren
    Renato Markovinović
    Jan-Dirk Jansen
    Computational Geosciences, 2006, 10 : 137 - 158