The use of uncertainty to choose matching variables in statistical matching

被引:4
|
作者
D'Orazio, Marcello [1 ]
Di Zio, Marco [2 ]
Scanu, Mauro [2 ]
机构
[1] UN, FAO, Rome, Italy
[2] Ist Nazl Stat ISTAT, Rome, Italy
关键词
Data fusion; Synthetical matching; Consistency; Partial identifiability; PARTIALLY IDENTIFIED PARAMETERS; CONFIDENCE-INTERVALS;
D O I
10.1016/j.ijar.2017.08.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Statistical matching aims at combining information available in distinct sample surveys referred to the same target population. The matching is usually based on a set of common variables shared by the available data sources. For matching purposes just a subset of all the common variables should be chosen, the so called matching variables. The paper presents a novel method for selecting the matching variables based on the analysis of the uncertainty characterizing the matching. framework. The uncertainty is caused by unavailability of data for estimating parameters describing the association between variables not jointly observed in a single data source. The paper focuses on the case of categorical variables and presents a sequential procedure for identifying the most effective subset of common variables in reducing the overall uncertainty. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:433 / 440
页数:8
相关论文
共 50 条
  • [41] A methodology for statistical matching with fuzzy logic
    Noll, Patrick
    Alpar, Paul
    NAFIPS 2007 - 2007 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, 2007, : 73 - +
  • [42] Bandwidth selection for statistical matching and prediction
    Inés Barbeito
    Ricardo Cao
    Stefan Sperlich
    TEST, 2023, 32 : 418 - 446
  • [43] Partial identification in statistical matching with misclassification
    Di Zio, Marco
    Vantaggi, Barbara
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 82 : 227 - 241
  • [44] Imprecise Imputation: A Nonparametric Micro Approach Reflecting the Natural Uncertainty of Statistical Matching with Categorical Data
    Endres, Eva
    Fink, Paul
    Augustin, Thomas
    JOURNAL OF OFFICIAL STATISTICS, 2019, 35 (03) : 599 - 624
  • [45] MATCHING FETS BY DESIGN IS FASTER AND CHEAPER THAN BY PICK AND CHOOSE
    CHRISTENSEN, R
    WOLLESEN, D
    ELECTRONICS-US, 1969, 42 (25): : 114 - +
  • [46] Bayesian statistical models with uncertainty variables
    Ding, Jianhua
    Zhang, Zhiqiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (01) : 1109 - 1117
  • [47] Matching Patterns with Variables Under Edit Distance
    Gawrychowski, Pawel
    Manea, Florin
    Siemer, Stefan
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2022, 2022, 13617 : 275 - 289
  • [48] Adding trace matching with free variables to AspectJ
    Allan, C
    Avgustinov, P
    Christensen, AS
    Hendren, L
    Kuzins, S
    Lhoták, O
    de Moor, O
    Sereni, D
    Sittampalam, G
    Tibble, J
    ACM SIGPLAN NOTICES, 2005, 40 (10) : 345 - 364
  • [49] Predictive mean matching imputation of semicontinuous variables
    Vink, Gerko
    Frank, Laurence E.
    Pannekoek, Jeroen
    van Buuren, Stef
    STATISTICA NEERLANDICA, 2014, 68 (01) : 61 - 90
  • [50] Pattern Matching with Variables: A Multivariate Complexity Analysis
    Fernau, Henning
    Schmid, Markus L.
    COMBINATORIAL PATTERN MATCHING, 2013, 7922 : 83 - 94