The use of uncertainty to choose matching variables in statistical matching

被引:4
|
作者
D'Orazio, Marcello [1 ]
Di Zio, Marco [2 ]
Scanu, Mauro [2 ]
机构
[1] UN, FAO, Rome, Italy
[2] Ist Nazl Stat ISTAT, Rome, Italy
关键词
Data fusion; Synthetical matching; Consistency; Partial identifiability; PARTIALLY IDENTIFIED PARAMETERS; CONFIDENCE-INTERVALS;
D O I
10.1016/j.ijar.2017.08.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Statistical matching aims at combining information available in distinct sample surveys referred to the same target population. The matching is usually based on a set of common variables shared by the available data sources. For matching purposes just a subset of all the common variables should be chosen, the so called matching variables. The paper presents a novel method for selecting the matching variables based on the analysis of the uncertainty characterizing the matching. framework. The uncertainty is caused by unavailability of data for estimating parameters describing the association between variables not jointly observed in a single data source. The paper focuses on the case of categorical variables and presents a sequential procedure for identifying the most effective subset of common variables in reducing the overall uncertainty. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:433 / 440
页数:8
相关论文
共 50 条
  • [31] Statistical Properties of Color Matching Functions
    da Fonseca, Maria
    Samengo, Ines
    NEURAL COMPUTATION, 2021, 33 (09) : 2578 - 2601
  • [32] Incoherence correction strategies in statistical matching
    Capotorti, Andrea
    Vantaggi, Barbara
    ISIPTA '11 - PROCEEDINGS OF THE SEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2011, : 119 - 128
  • [33] Tool Matching Statistical Methodology & Application
    Huang, Sarah
    2011 INTERNATIONAL SYMPOSIUM ON SEMICONDUCTOR MANUFACTURING (ISSM) AND E-MANUFACTURING AND DESIGN COLLABORATION SYMPOSIUM (EMDC), 2011,
  • [34] Incoherence correction strategies in statistical matching
    Brozzi, Alessandro
    Capotorti, Andrea
    Vantaggi, Barbara
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2012, 53 (08) : 1124 - 1136
  • [35] Probabilistic Graphical Models for Statistical Matching
    Endres, Eva
    Augustin, Thomas
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 340 - 340
  • [36] Partial identification in the statistical matching problem
    Ahfock, Daniel
    Pyne, Saumyadipta
    Lee, Sharon X.
    McLachlan, Geoffrey J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 104 : 79 - 90
  • [37] Statistical matching using fractional imputation
    Kim, Jae Kwang
    Berg, Emily
    Park, Taesung
    SURVEY METHODOLOGY, 2016, 42 (01) : 19 - 40
  • [38] A Statistical Approach to the Matching of Local Features
    Rabin, J.
    Delon, J.
    Gousseau, Y.
    SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (03): : 931 - 958
  • [39] Propensity Score Matching A Statistical Method
    Kane, Liam T.
    Fang, Taolin
    Galetta, Matthew S.
    Goyal, Dhruv K. C.
    Nicholson, Kristen J.
    Kepler, Christopher K.
    Vaccaro, Alexander R.
    Schroeder, Gregory D.
    CLINICAL SPINE SURGERY, 2020, 33 (03): : 120 - 122
  • [40] Bandwidth selection for statistical matching and prediction
    Barbeito, Ines
    Cao, Ricardo
    Sperlich, Stefan
    TEST, 2023, 32 (01) : 418 - 446