Ancilla-Free Quantum Error Correction Codes for Quantum Metrology

被引:61
|
作者
Layden, David [1 ,2 ]
Zhou, Sisi [3 ,4 ]
Cappellaro, Paola [1 ,2 ]
Jiang, Liang [3 ,4 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[3] Yale Univ, Dept Appl Phys & Phys, New Haven, CT 06511 USA
[4] Yale Univ, Yale Quantum Inst, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
DECOHERENCE;
D O I
10.1103/PhysRevLett.122.040502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum error correction has recently emerged as a tool to enhance quantum sensing under Markovian noise. It works by correcting errors in a sensor while letting a signal imprint on the logical state. This approach typically requires a specialized error-correcting code, as most existing codes correct away both the dominant errors and the signal. To date, however, few such specialized codes are known, among which most require noiseless, controllable ancillas. We show here that such ancillas are not needed when the signal Hamiltonian and the error operators commute, a common limiting type of decoherence in quantum sensors. We give a semidefinite program for finding optimal ancilla-free sensing codes in general, as well as closed-form codes for two common sensing scenarios: qubits undergoing dephasing, and a lossy bosonic mode. Finally, we analyze the sensitivity enhancement offered by the qubit code under arbitrary spatial noise correlations, beyond the ideal limit of orthogonal signal and noise operators.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Quantum error correction and quantum computation with detected-jump correcting quantum codes
    Alber, G
    Delgado, A
    Mussinger, M
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2001, 49 (10-11): : 901 - 908
  • [32] Scalable implementation of ancilla-free optimal 1 → M phase-covariant quantum cloning by combining quantum Zeno dynamics and adiabatic passage
    Shao, Xiao-Qiang
    Zheng, Tai-Yu
    Zhang, Shou
    PHYSICS LETTERS A, 2011, 375 (40) : 3504 - 3508
  • [33] Quantum Metrology Enhanced by Leveraging Informative Noise with Error Correction
    Chen, Hongzhen
    Chen, Yu
    Liu, Jing
    Miao, Zibo
    Yuan, Haidong
    PHYSICAL REVIEW LETTERS, 2024, 133 (19)
  • [34] Quantum Error-Correction Codes on Abelian Groups
    Amini, Massoud
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2010, 5 (01): : 55 - 67
  • [35] Optimized quantum error-correction codes for experiments
    Nebendahl, V.
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [36] Nested Quantum Error Correction Codes via Subgraphs
    Li, Yuan
    Ji, Chunlei
    Xu, Mantao
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (02) : 390 - 396
  • [37] Decoding Quantum Error Correction Codes With Local Variation
    Hanks M.
    Munro W.J.
    Nemoto K.
    IEEE Transactions on Quantum Engineering, 2020, 1
  • [38] Parallelized quantum error correction with fracton topological codes
    Brown, Benjamin J.
    Williamson, Dominic J.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [39] Quantum error correction with degenerate codes for correlated noise
    Chiribella, Giulio
    Dall'Arno, Michele
    D'Ariano, Giacomo Mauro
    Macchiavello, Chiara
    Perinotti, Paolo
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [40] Sparse-graph codes for quantum error correction
    MacKay, DJC
    Mitchison, G
    McFadden, PL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (10) : 2315 - 2330