Ancilla-Free Quantum Error Correction Codes for Quantum Metrology

被引:61
|
作者
Layden, David [1 ,2 ]
Zhou, Sisi [3 ,4 ]
Cappellaro, Paola [1 ,2 ]
Jiang, Liang [3 ,4 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[3] Yale Univ, Dept Appl Phys & Phys, New Haven, CT 06511 USA
[4] Yale Univ, Yale Quantum Inst, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
DECOHERENCE;
D O I
10.1103/PhysRevLett.122.040502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum error correction has recently emerged as a tool to enhance quantum sensing under Markovian noise. It works by correcting errors in a sensor while letting a signal imprint on the logical state. This approach typically requires a specialized error-correcting code, as most existing codes correct away both the dominant errors and the signal. To date, however, few such specialized codes are known, among which most require noiseless, controllable ancillas. We show here that such ancillas are not needed when the signal Hamiltonian and the error operators commute, a common limiting type of decoherence in quantum sensors. We give a semidefinite program for finding optimal ancilla-free sensing codes in general, as well as closed-form codes for two common sensing scenarios: qubits undergoing dephasing, and a lossy bosonic mode. Finally, we analyze the sensitivity enhancement offered by the qubit code under arbitrary spatial noise correlations, beyond the ideal limit of orthogonal signal and noise operators.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Bosonic quantum error correction codes in superconducting quantum circuits
    Cai, Weizhou
    Ma, Yuwei
    Wang, Weiting
    Zou, Chang-Ling
    Sun, Luyan
    FUNDAMENTAL RESEARCH, 2021, 1 (01): : 50 - 67
  • [22] Error correction and decoding for quantum stabilizer codes
    Xiao Fang-Ying
    Chen Han-Wu
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [23] Quantum error correction with fractal topological codes
    Dua, Arpit
    Jochym-O'Connor, Tomas
    Zhu, Guanyu
    QUANTUM, 2023, 7
  • [24] Homological error correction: Classical and quantum codes
    Bombin, H.
    Martin-Delgado, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
  • [25] An efficient simulation of quantum error correction codes
    Priya, R. Padma
    Baradeswaran, A.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 2167 - 2175
  • [26] Unitary Application of the Quantum Error Correction Codes
    You Bo
    Xu Ke
    Wu Xiao-Hua
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (03) : 377 - 380
  • [27] Unitary Application of the Quantum Error Correction Codes
    游波
    许可
    吴小华
    Communications in Theoretical Physics, 2012, 58 (09) : 377 - 380
  • [28] Permutationally invariant codes for quantum error correction
    Pollatsek, H
    Ruskai, MB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 392 : 255 - 288
  • [29] Scheme for realizing ancilla-free 1 → M economic phase-covariant quantum cloning of qubits and qutrits
    Zou, Xubo
    Dong, Yuli
    Guo, Guangcan
    PHYSICS LETTERS A, 2006, 360 (01) : 44 - 48
  • [30] Approximate quantum error correction, random codes, and quantum channel capacity
    Klesse, Rochus
    PHYSICAL REVIEW A, 2007, 75 (06):