Mathematical properties of models of the reaction-diffusion type

被引:4
|
作者
Beccaria, M [1 ]
Soliani, G
机构
[1] Univ Lecce, Dipartimento Fis, I-73100 Lecce, Italy
[2] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
来源
PHYSICA A | 1998年 / 260卷 / 3-4期
关键词
D O I
10.1016/S0378-4371(98)00295-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear systems of the reaction-diffusion (RD) type, including Gierer-Meinhardt models of autocatalysis, are studied using Lie algebras coming from their prolongation structure. Depending on the form of the functions of the fields characterizing the reactions among them, we consider both quadratic and cubic RD equations. On the basis of the prolongation algebra associated with a given RD model, we distinguish the model as a completely linearizable or a partially linearizable system. In this classification a crucial role is played by the relative sign of the diffusion coefficients, which strongly influence the properties of the system. In correspondence to the above situations, different algebraic characterizations, together with exact and approximate solutions, are found. Interesting examples are the quadratic RD model, which admits an exact solution in terms of the elliptic Weierstrass function, and the cubic Gierer-Meinhardt model, whose prolongation algebra leads to the similitude group in the plane. (C) Elsevier Science B.V. All rights reserved.
引用
收藏
页码:301 / 337
页数:37
相关论文
共 50 条
  • [21] Dynamical properties of the reaction-diffusion type model of fast synaptic transport
    Bielecki, Andrzej
    Kalita, Piotr
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 329 - 340
  • [22] Reaction-diffusion models for morphological patterning of hESCs
    Prajakta Bedekar
    Ilya Timofeyev
    Aryeh Warmflash
    Misha Perepelitsa
    Journal of Mathematical Biology, 2021, 83
  • [23] DISLOCATION PATTERNS FROM REACTION-DIFFUSION MODELS
    SALAZAR, JM
    FOURNET, R
    BANAI, N
    ACTA METALLURGICA ET MATERIALIA, 1995, 43 (03): : 1127 - 1134
  • [24] UNIFORM PERSISTENCE IN REACTION-DIFFUSION PLANKTON MODELS
    RUAN, SG
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (01) : 459 - 470
  • [25] SPATIAL SEGREGATION IN REACTION-DIFFUSION EPIDEMIC MODELS
    Wang, Hao
    Wang, Kai
    Kim, Yong-Jung
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (05) : 1680 - 1709
  • [26] Classification of phase transitions in reaction-diffusion models
    Elgart, Vlad
    Kamenev, Alex
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [27] Multi-shocks in reaction-diffusion models
    M. Arabsalmani
    A. Aghamohammadi
    The European Physical Journal B, 2007, 55 : 439 - 446
  • [28] PERSISTENCE AND PROPAGATION IN PERIODIC REACTION-DIFFUSION MODELS
    Hamel, Francois
    Roques, Lionel
    TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (03): : 217 - 228
  • [29] Analytically solvable models of reaction-diffusion systems
    Zemskov, EP
    Kassner, K
    EUROPEAN JOURNAL OF PHYSICS, 2004, 25 (03) : 361 - 367
  • [30] ON IMPULSIVE REACTION-DIFFUSION MODELS IN HIGHER DIMENSIONS
    Fazly, Mostafa
    Lewis, Mark
    Wang, Hao
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (01) : 224 - 246