Abelianizing vertex algebras

被引:38
|
作者
Li, HS [1 ]
机构
[1] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
[2] Harbin Normal Univ, Dept Math, Harbin, Peoples R China
关键词
D O I
10.1007/s00220-005-1348-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To every vertex algebra V we associate a canonical decreasing sequence of subspaces and prove that the associated graded vector space gr(V) is naturally a vertex Poisson algebra, in particular a commutative vertex algebra. We establish a relation between this decreasing sequence and the sequence C-n introduced by Zhu. By using the (classical) algebra gr(V), we prove that for any vertex algebra V, C-2-cofiniteness implies C-n-cofiniteness for all n >= 2. We further use gr(V) to study generating subspaces of certain types for lower truncated Z-graded vertex algebras.
引用
收藏
页码:391 / 411
页数:21
相关论文
共 50 条
  • [41] Commutative vertex algebras and their degenerations
    B. L. Feigin
    Functional Analysis and Its Applications, 2014, 48 : 175 - 182
  • [42] Finite vertex algebras and nilpotence
    D'Andrea, Alessandro
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (04) : 669 - 688
  • [43] On classification of poisson vertex algebras
    De Sole, Alberto
    Kac, Victor G.
    Wakimoto, Minoru
    TRANSFORMATION GROUPS, 2010, 15 (04) : 883 - 907
  • [44] On classification of poisson vertex algebras
    Alberto De Sole
    Victor G. Kac
    Minoru Wakimoto
    Transformation Groups, 2010, 15 : 883 - 907
  • [45] On twisted representations of vertex algebras
    Roitman, M
    ADVANCES IN MATHEMATICS, 2003, 176 (01) : 53 - 88
  • [46] Toroidal vertex algebras and their modules
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF ALGEBRA, 2012, 365 : 50 - 82
  • [47] Vertex algebras and combinatorial identities
    Primc, M
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (1-2) : 221 - 238
  • [48] An Abstract Construction of Vertex Algebras
    Zhang, Wei
    ALGEBRA COLLOQUIUM, 2014, 21 (03) : 427 - 436
  • [49] Bosonization and Vertex Algebras with Defects
    M. Mintchev
    P. Sorba
    Annales Henri Poincaré, 2006, 7 : 1375 - 1393
  • [50] Vertex Operators for Boundary Algebras
    E. Ragoucy
    Letters in Mathematical Physics, 2001, 58 : 249 - 260