Abelianizing vertex algebras

被引:38
|
作者
Li, HS [1 ]
机构
[1] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
[2] Harbin Normal Univ, Dept Math, Harbin, Peoples R China
关键词
D O I
10.1007/s00220-005-1348-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To every vertex algebra V we associate a canonical decreasing sequence of subspaces and prove that the associated graded vector space gr(V) is naturally a vertex Poisson algebra, in particular a commutative vertex algebra. We establish a relation between this decreasing sequence and the sequence C-n introduced by Zhu. By using the (classical) algebra gr(V), we prove that for any vertex algebra V, C-2-cofiniteness implies C-n-cofiniteness for all n >= 2. We further use gr(V) to study generating subspaces of certain types for lower truncated Z-graded vertex algebras.
引用
收藏
页码:391 / 411
页数:21
相关论文
共 50 条
  • [21] Supersymmetric vertex algebras
    Heluani, Reimundo
    Kac, Victor G.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) : 103 - 178
  • [22] On indecomposable vertex algebras associated with vertex algebroids
    Jitjankarn, Phichet
    Yamskulna, Gaywalee
    JOURNAL OF ALGEBRA, 2020, 560 : 791 - 817
  • [23] Cohomological Hall Algebras, Vertex Algebras and Instantons
    Rapcak, Miroslav
    Soibelman, Yan
    Yang, Yaping
    Zhao, Gufang
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (03) : 1803 - 1873
  • [24] W-algebras as coset vertex algebras
    Tomoyuki Arakawa
    Thomas Creutzig
    Andrew R. Linshaw
    Inventiones mathematicae, 2019, 218 : 145 - 195
  • [25] CONFORMAL ALGEBRAS, VERTEX ALGEBRAS, AND THE LOGIC OF LOCALITY
    Smith, Jonathan D. H.
    MATHEMATICA SLOVACA, 2016, 66 (02) : 407 - 420
  • [26] W-algebras as coset vertex algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Linshaw, Andrew R.
    INVENTIONES MATHEMATICAE, 2019, 218 (01) : 145 - 195
  • [27] Cohomological Hall Algebras, Vertex Algebras and Instantons
    Miroslav Rapčák
    Yan Soibelman
    Yaping Yang
    Gufang Zhao
    Communications in Mathematical Physics, 2020, 376 : 1803 - 1873
  • [28] Vertex algebras and the class algebras of wreath products
    Wang, WQ
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 88 : 381 - 404
  • [29] Cluster algebras based on vertex operator algebras
    Zuevsky, Alexander
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (28-29):
  • [30] Trigonometric Lie algebras, affine Lie algebras, and vertex algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    ADVANCES IN MATHEMATICS, 2020, 363