Abelianizing vertex algebras

被引:38
|
作者
Li, HS [1 ]
机构
[1] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
[2] Harbin Normal Univ, Dept Math, Harbin, Peoples R China
关键词
D O I
10.1007/s00220-005-1348-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To every vertex algebra V we associate a canonical decreasing sequence of subspaces and prove that the associated graded vector space gr(V) is naturally a vertex Poisson algebra, in particular a commutative vertex algebra. We establish a relation between this decreasing sequence and the sequence C-n introduced by Zhu. By using the (classical) algebra gr(V), we prove that for any vertex algebra V, C-2-cofiniteness implies C-n-cofiniteness for all n >= 2. We further use gr(V) to study generating subspaces of certain types for lower truncated Z-graded vertex algebras.
引用
收藏
页码:391 / 411
页数:21
相关论文
共 50 条
  • [1] Abelianizing Vertex Algebras
    Haisheng Li
    Communications in Mathematical Physics, 2005, 259 : 391 - 411
  • [2] Vertex algebras and vertex poisson algebras
    Li, HS
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (01) : 61 - 110
  • [3] Modular Virasoro vertex algebras and affine vertex algebras
    Jiao, Xiangyu
    Li, Haisheng
    Mu, Qiang
    JOURNAL OF ALGEBRA, 2019, 519 : 273 - 311
  • [4] Vertex algebras and TKK algebras
    Chen, Fulin
    Ding, Lingen
    Wang, Qing
    JOURNAL OF ALGEBRA, 2024, 640 : 147 - 173
  • [5] Strongly graded vertex algebras generated by vertex Lie algebras
    Pei, Yufeng
    Yang, Jinwei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (08)
  • [6] Deforming vertex algebras by vertex bialgebras
    Jing, Naihuan
    Kong, Fei
    Li, Haisheng
    Tan, Shaobin
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (01)
  • [7] A new construction of vertex algebras and quasi-modules for vertex algebras
    Li, HS
    ADVANCES IN MATHEMATICS, 2006, 202 (01) : 232 - 286
  • [8] Logarithmic Vertex Algebras and Non-local Poisson Vertex Algebras
    Bakalov, Bojko
    Villarreal, Juan J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 404 (01) : 185 - 226
  • [9] Vertex algebroids and conformal vertex algebras associated with simple Leibniz algebras
    Thuy Bui
    Yamskulna, Gaywalee
    JOURNAL OF ALGEBRA, 2021, 586 : 357 - 401
  • [10] Logarithmic Vertex Algebras and Non-local Poisson Vertex Algebras
    Bojko Bakalov
    Juan J. Villarreal
    Communications in Mathematical Physics, 2023, 404 (1) : 185 - 226