A decomposition method for symbolic regression problems

被引:12
|
作者
Astarabadi, Samaneh Sadat Mousavi [1 ]
Ebadzadeh, Mohammad Mehdi [1 ]
机构
[1] Amirkabir Univ Technol, Dept Comp Engn & Informat Technol, Tehran, Iran
关键词
Genetic Programming; Symbolic regression; Performance estimation; Decomposition; Optimization;
D O I
10.1016/j.asoc.2017.10.041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this paper is to improve the efficiency of Genetic Programming (GP) by decomposing a regression problem into several subproblems. An optimization problem is defined to find subproblems of the original problem for which the performance of GP is better than for the original problem. In order to evaluate the proposed decomposition method, the subproblems of several benchmark problems are found by solving the optimization problem. Then, a 2-layer GP system is used to find subproblems' solutions in the first layer and the solution of the original problem in the second layer. The results of this 2-layer GP system show that the proposed decomposition method does not generate trivial subproblems. It generates subproblems that improve the efficiency of GP against when subproblems are not used. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:514 / 523
页数:10
相关论文
共 50 条
  • [41] Symbolic Domain Decomposition
    Carette, Jacques
    Sexton, Alan P.
    Sorge, Volker
    Watt, Stephen M.
    INTELLIGENT COMPUTER MATHEMATICS, 2010, 6167 : 172 - +
  • [42] A novel method based on symbolic regression for interpretable semantic similarity measurement
    Martinez-Gil, Jorge
    Chaves-Gonzalez, Jose M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 160 (160)
  • [43] A flexible symbolic regression method for constructing interpretable clinical prediction models
    La Cava, William G. G.
    Lee, Paul C. C.
    Ajmal, Imran
    Ding, Xiruo
    Solanki, Priyanka
    Cohen, Jordana B. B.
    Moore, Jason H. H.
    Herman, Daniel S. S.
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [44] A flexible symbolic regression method for constructing interpretable clinical prediction models
    William G. La Cava
    Paul C. Lee
    Imran Ajmal
    Xiruo Ding
    Priyanka Solanki
    Jordana B. Cohen
    Jason H. Moore
    Daniel S. Herman
    npj Digital Medicine, 6
  • [45] Smooth Symbolic Regression: Transformation of Symbolic Regression into a Real-Valued Optimization Problem
    Pitzer, Erik
    Kronberger, Gabriel
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 375 - 383
  • [46] Solving symbolic regression problems with uniform design-aided gene expression programming
    Yunliang Chen
    Dan Chen
    Samee U. Khan
    Jianzhong Huang
    Changsheng Xie
    The Journal of Supercomputing, 2013, 66 : 1553 - 1575
  • [47] An extension of the Doolittle method to simple regression problems
    Wherry, RJ
    JOURNAL OF EDUCATIONAL PSYCHOLOGY, 1941, 32 : 459 - 464
  • [48] Perturbation method in problems of linear matrix regression
    Nakonechnyi A.G.
    Kudin G.I.
    Zinko P.N.
    Zinko T.P.
    Journal of Automation and Information Sciences, 2020, 52 (01) : 1 - 12
  • [49] Solving symbolic regression problems with uniform design-aided gene expression programming
    Chen, Yunliang
    Chen, Dan
    Khan, Samee U.
    Huang, Jianzhong
    Xie, Changsheng
    JOURNAL OF SUPERCOMPUTING, 2013, 66 (03): : 1553 - 1575
  • [50] A Comparative Study on the Numerical Performance of Kaizen Programming and Genetic Programming for Symbolic Regression Problems
    Ferreira, Jimena
    Ines Torres, Ana
    Pedemonte, Martin
    2019 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2019, : 202 - 207