Smooth Symbolic Regression: Transformation of Symbolic Regression into a Real-Valued Optimization Problem

被引:1
|
作者
Pitzer, Erik [1 ]
Kronberger, Gabriel [1 ]
机构
[1] Univ Appl Sci Upper Austria, Heurist & Evolutionary Algorithms Lab, Sch Informat Commun & Media, Franz Fritsch Str 11, A-4600 Wels, Austria
关键词
D O I
10.1007/978-3-319-27340-2_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The typical methods for symbolic regression produce rather abrupt changes in solution candidates. In this work, we have tried to transform symbolic regression from an optimization problem, with a landscape that is so rugged that typical analysis methods do not produce meaningful results, to one that can be compared to typical and very smooth real-valued problems. While the ruggedness might not interfere with the performance of optimization, it restricts the possibilities of analysis. Here, we have explored different aspects of a transformation and propose a simple procedure to create real-valued optimization problems from symbolic regression problems.
引用
收藏
页码:375 / 383
页数:9
相关论文
共 50 条
  • [1] SEMANTICS BASED MUTATION IN GENETIC PROGRAMMING: THE CASE FOR REAL-VALUED SYMBOLIC REGRESSION
    Uy, Nguyen Quang
    Hoai, Nguyen Xuan
    O'Neill, Michael
    MENDELL 2009, 2009, : 73 - 80
  • [2] Semantically-based crossover in genetic programming: application to real-valued symbolic regression
    Nguyen Quang Uy
    Nguyen Xuan Hoai
    Michael O’Neill
    R. I. McKay
    Edgar Galván-López
    Genetic Programming and Evolvable Machines, 2011, 12 : 91 - 119
  • [3] Semantically-based crossover in genetic programming: application to real-valued symbolic regression
    Nguyen Quang Uy
    Nguyen Xuan Hoai
    O'Neill, Michael
    McKay, R. I.
    Galvan-Lopez, Edgar
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2011, 12 (02) : 91 - 119
  • [4] Sequential Parameter Optimization for Symbolic Regression
    Bartz-Beielstein, Thomas
    Flasch, Oliver
    Zaefferer, Martin
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12), 2012, : 495 - 495
  • [5] Symbolic Regression
    Lipovetsky, Stan
    TECHNOMETRICS, 2024, 66 (04) : 674 - 675
  • [6] Generalization bounds for the regression of real-valued functions
    Kil, RM
    Koo, I
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1766 - 1770
  • [7] Regression Models for Symbolic Interval-Valued Variables
    Chacon, Jose Emmanuel
    Rodriguez, Oldemar
    ENTROPY, 2021, 23 (04)
  • [8] Application of Grammatical Swarm to Symbolic Regression Problem
    Kita, Eisuke
    Yamamoto, Risako
    Sugiura, Hideyuki
    Zuo, Yi
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 : 356 - 365
  • [9] Elite Bases Regression: A Real-time Algorithm for Symbolic Regression
    Chen, Chen
    Luo, Changtong
    Jiang, Zonglin
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 529 - 535
  • [10] A Particle Swarm Optimization Approach for Symbolic Regression
    Ma X.
    Li X.
    Tang R.-J.
    Liu Q.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (08): : 1714 - 1726