Smooth Symbolic Regression: Transformation of Symbolic Regression into a Real-Valued Optimization Problem

被引:1
|
作者
Pitzer, Erik [1 ]
Kronberger, Gabriel [1 ]
机构
[1] Univ Appl Sci Upper Austria, Heurist & Evolutionary Algorithms Lab, Sch Informat Commun & Media, Franz Fritsch Str 11, A-4600 Wels, Austria
关键词
D O I
10.1007/978-3-319-27340-2_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The typical methods for symbolic regression produce rather abrupt changes in solution candidates. In this work, we have tried to transform symbolic regression from an optimization problem, with a landscape that is so rugged that typical analysis methods do not produce meaningful results, to one that can be compared to typical and very smooth real-valued problems. While the ruggedness might not interfere with the performance of optimization, it restricts the possibilities of analysis. Here, we have explored different aspects of a transformation and propose a simple procedure to create real-valued optimization problems from symbolic regression problems.
引用
收藏
页码:375 / 383
页数:9
相关论文
共 50 条
  • [21] A hybrid connectionist-symbolic approach for real-valued pattern classification
    Lina, LTM
    Kar, LS
    Artificial Intelligence Applications and Innovations II, 2005, 187 : 49 - 59
  • [22] Multiview Symbolic Regression
    Russeil, Etienne
    de Franca, Fabricio Olivetti
    Malanchev, Konstantin
    Burlacu, Bogdan
    Ishida, Emille E. O.
    Leroux, Marion
    Michelin, Clement
    Moinard, Guillaume
    Gangler, Emmanuel
    PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024, 2024, : 961 - 970
  • [23] Lightweight Symbolic Regression with the Interaction-Transformation Representation
    Imai Aldeia, Guilherme Seidyo
    de Franca, Fabricio Olivetti
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2143 - 2150
  • [24] Interaction-Transformation Evolutionary Algorithm for Symbolic Regression
    de Franca, F. O.
    Aldeia, G. S., I
    EVOLUTIONARY COMPUTATION, 2021, 29 (03) : 367 - 390
  • [25] Transformation-Interaction-Rational Representation for Symbolic Regression
    de Franca, Fabricio Olivetti
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 920 - 928
  • [26] Solution of the optimal control problem by symbolic regression method
    Diveev, A., I
    Konstantinov, S., V
    Danilova, A. M.
    14TH INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS, 2021, 186 : 646 - 653
  • [27] Universal Approach to Solution of Optimization Problems by Symbolic Regression
    Sofronova, Elena
    Diveev, Askhat
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [28] Nonlinear Least Squares Optimization of Constants in Symbolic Regression
    Kommenda, Michael
    Affenzeller, Michael
    Kronberger, Gabriel
    Winkler, Stephan M.
    COMPUTER AIDED SYSTEMS THEORY, PT 1, 2013, 8111 : 420 - 427
  • [29] Estimation of error confidence intervals for the regression of real-valued functions
    Kil, RM
    Koo, I
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1002 - 1006
  • [30] The Lookup Table Regression Model for Histogram-Valued Symbolic Data
    Ichino, Manabu
    STATS, 2022, 5 (04): : 1271 - 1293