Smooth Symbolic Regression: Transformation of Symbolic Regression into a Real-Valued Optimization Problem

被引:1
|
作者
Pitzer, Erik [1 ]
Kronberger, Gabriel [1 ]
机构
[1] Univ Appl Sci Upper Austria, Heurist & Evolutionary Algorithms Lab, Sch Informat Commun & Media, Franz Fritsch Str 11, A-4600 Wels, Austria
关键词
D O I
10.1007/978-3-319-27340-2_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The typical methods for symbolic regression produce rather abrupt changes in solution candidates. In this work, we have tried to transform symbolic regression from an optimization problem, with a landscape that is so rugged that typical analysis methods do not produce meaningful results, to one that can be compared to typical and very smooth real-valued problems. While the ruggedness might not interfere with the performance of optimization, it restricts the possibilities of analysis. Here, we have explored different aspects of a transformation and propose a simple procedure to create real-valued optimization problems from symbolic regression problems.
引用
收藏
页码:375 / 383
页数:9
相关论文
共 50 条
  • [31] Constrained linear regression models for symbolic interval-valued variablesk
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 333 - 347
  • [32] Interaction-transformation symbolic regression with extreme learning machine
    de Franca, Fabricio Olivetti
    de Lima, Maira Zabuscha
    NEUROCOMPUTING, 2021, 423 : 609 - 619
  • [33] Transformation of CPS coordinates using symbolic regression and genetic programming
    Chou, HJ
    Wu, CH
    Su, WH
    Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005, : 301 - 306
  • [34] Bloat and Generalisation in Symbolic Regression
    Dick, Grant
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 491 - 502
  • [35] Feature Standardisation in Symbolic Regression
    Owen, Caitlin A.
    Dick, Grant
    Whigham, Peter A.
    AI 2018: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11320 : 565 - 576
  • [36] Symbolic-regression boosting
    Sipper, Moshe
    Moore, Jason H.
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2021, 22 (03) : 357 - 381
  • [37] Symbolic regression for better specification
    Tsionas, Mike G.
    Assaf, A. George
    INTERNATIONAL JOURNAL OF HOSPITALITY MANAGEMENT, 2020, 91
  • [38] Symbolic regression in multicollinearity problems
    Castillo, Flor A.
    Villa, Carlos M.
    GECCO 2005: Genetic and Evolutionary Computation Conference, Vols 1 and 2, 2005, : 2207 - 2208
  • [39] Symbolic-regression boosting
    Moshe Sipper
    Jason H. Moore
    Genetic Programming and Evolvable Machines, 2021, 22 : 357 - 381
  • [40] Neural Symbolic Regression that Scales
    Biggio, Luca
    Bendinelli, Tommaso
    Neitz, Alexander
    Lucchi, Aurelien
    Parascandolo, Giambattista
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139