Robust parameter design optimization of simulation experiments using stochastic perturbation methods

被引:5
|
作者
Miranda, A. K. [1 ]
Del Castillo, E. [1 ]
机构
[1] Penn State Univ, Dept Ind & Mfg Engn, University Pk, PA 16802 USA
关键词
simulation optimization; noise factors; crossed arrays; non-homogeneous variance; SYSTEMS; APPROXIMATION;
D O I
10.1057/jors.2009.163
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Stochastic perturbation methods can be applied to problems for which either the objective function is represented analytically, or the objective function is the result of a simulation experiment. The Simultaneous Perturbation Stochastic Approximation (SPSA) method has the advantage over similar methods of requiring only two measurements at each iteration of the search. This feature makes SPSA attractive for robust parameter design (RPD) problems where some factors affect the variance of the response(s) of interest. In this paper, the feasibility of SPSA as a RPD optimizer is presented, first when the objective function is known, and then when the objective function is estimated by means of a discrete-event simulation. Journal of the Operational Research Society (2011) 62, 198-205. doi:10.1057/jors.2009.163 Published online 10 February 2010
引用
收藏
页码:198 / 205
页数:8
相关论文
共 50 条
  • [41] DESIGN OF OPTIMAL ROBUST CONTROLLER FOR SYSTEMS WITH LARGE PARAMETER PERTURBATION
    Wang Yaoqing~* Lu Yongzai (Research Institute of Industrial Process Control
    中国科学院研究生院学报, 1989, (02) : 21 - 34
  • [42] Simulation models for robust design using location depth methods
    Stadlober, E
    Kocher, M
    Rappitsch, G
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2003, 19 (04) : 317 - 326
  • [43] Exploiting the inherent structure in robust parameter design experiments
    Berube, J
    Nair, VN
    STATISTICA SINICA, 1998, 8 (01) : 43 - 66
  • [44] PARAMETER COORDINATION AND ROBUST OPTIMIZATION FOR MULTIDISCIPLINARY DESIGN
    HU Jie PENG Yinghong School of Mechanical Engineering
    Chinese Journal of Mechanical Engineering, 2006, (03) : 368 - 372
  • [45] DESIGN OF EXPERIMENTS FOR SIMULATION MODELS WITH STOCHASTIC CONSTRAINTS
    Mu, S.
    Yin, J.
    Yuan, J.
    Ng, S. H.
    2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2009, : 2094 - 2098
  • [46] Robust Parameter Design and Optimization for Quality Engineering
    Yanıkoğlu İ.
    Albey E.
    Okçuoğlu S.
    Operations Research Forum, 3 (1)
  • [47] Parameter coordination and robust optimization for multidisciplinary design
    Hu, Jie
    Peng, Yinghong
    Xiong, Guangleng
    Chinese Journal of Mechanical Engineering (English Edition), 2006, 19 (03): : 368 - 372
  • [48] Robust Rank Reduction Algorithm with Iterative Parameter Optimization and Vector Perturbation
    Li, Peng
    Feng, Jiao
    de Lamare, Rodrigo C.
    ALGORITHMS, 2015, 8 (03): : 573 - 589
  • [49] Stochastic Nonlinear Optimization for Robust Design of Catalysts
    Lee, Chang Jun
    Prasad, Vinay
    Lee, Jong Min
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (07) : 3938 - 3946
  • [50] Robust optimization using computer experiments
    Stinstra, Erwin
    den Hertog, Dick
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 191 (03) : 816 - 837