Robust parameter design optimization of simulation experiments using stochastic perturbation methods

被引:5
|
作者
Miranda, A. K. [1 ]
Del Castillo, E. [1 ]
机构
[1] Penn State Univ, Dept Ind & Mfg Engn, University Pk, PA 16802 USA
关键词
simulation optimization; noise factors; crossed arrays; non-homogeneous variance; SYSTEMS; APPROXIMATION;
D O I
10.1057/jors.2009.163
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Stochastic perturbation methods can be applied to problems for which either the objective function is represented analytically, or the objective function is the result of a simulation experiment. The Simultaneous Perturbation Stochastic Approximation (SPSA) method has the advantage over similar methods of requiring only two measurements at each iteration of the search. This feature makes SPSA attractive for robust parameter design (RPD) problems where some factors affect the variance of the response(s) of interest. In this paper, the feasibility of SPSA as a RPD optimizer is presented, first when the objective function is known, and then when the objective function is estimated by means of a discrete-event simulation. Journal of the Operational Research Society (2011) 62, 198-205. doi:10.1057/jors.2009.163 Published online 10 February 2010
引用
收藏
页码:198 / 205
页数:8
相关论文
共 50 条
  • [31] Optimization of Kanban systems using robust parameter design: a case of study
    W. L. M. Braga
    F. L. Naves
    J. H. F. Gomes
    The International Journal of Advanced Manufacturing Technology, 2020, 106 : 1365 - 1374
  • [32] Optimization of AISI 1045 end milling using robust parameter design
    Brito, T. G.
    Paiva, A. P.
    Paula, T. I.
    Dalosto, D. N.
    Ferreira, J. R.
    Balestrassi, P. P.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 84 (5-8): : 1185 - 1199
  • [33] Optimization of AISI 1045 end milling using robust parameter design
    T. G. Brito
    A. P. Paiva
    T. I. Paula
    D. N. Dalosto
    J. R. Ferreira
    P. P. Balestrassi
    The International Journal of Advanced Manufacturing Technology, 2016, 84 : 1185 - 1199
  • [34] Optimization of Kanban systems using robust parameter design: a case of study
    Braga, W. L. M.
    Naves, F. L.
    Gomes, J. H. F.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 106 (3-4): : 1365 - 1374
  • [35] Using hierarchical probability models to evaluate robust parameter design methods
    Frey, Daniel D.
    Li, Xiang
    JOURNAL OF QUALITY TECHNOLOGY, 2008, 40 (01) : 59 - 77
  • [36] Design and optimization of an ethanol dehydration process using stochastic methods
    Vazquez-Ojeda, Maria
    Gabriel Segovia-Hernandez, Juan
    Hernandez, Salvador
    Hernandez-Aguirre, Arturo
    Kiss, Anton Alexandru
    SEPARATION AND PURIFICATION TECHNOLOGY, 2013, 105 : 90 - 97
  • [37] Robust design optimization in aeronautics using stochastic analysis and evolutionary algorithms
    Pons-Prats, J.
    Bugeda, G.
    Zarate, F.
    Onate, E.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2011, 225 (G10) : 1131 - 1151
  • [38] Robust failure detector principle and design for parameter perturbation system
    Wu, Xin-Kai
    Hu, Jun-Da
    He, Zhao-Hong
    Zhou, Zhong
    Guo, Xiao-Ding
    Xiangtan Kuangye Xueyuan Xuebao/Journal of Xiangtan Mining Institute, 2002, 17 (03):
  • [39] lp parameter perturbation and design of robust controllers for linear systems
    Bozorg, M
    Nebot, EM
    INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (03) : 267 - 275
  • [40] lp parameter perturbation and design of robust controllers for linear systems
    Univ of Yazd, Yazd, Iran
    Int J Control, 3 (267-275):