Robust parameter design optimization of simulation experiments using stochastic perturbation methods

被引:5
|
作者
Miranda, A. K. [1 ]
Del Castillo, E. [1 ]
机构
[1] Penn State Univ, Dept Ind & Mfg Engn, University Pk, PA 16802 USA
关键词
simulation optimization; noise factors; crossed arrays; non-homogeneous variance; SYSTEMS; APPROXIMATION;
D O I
10.1057/jors.2009.163
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Stochastic perturbation methods can be applied to problems for which either the objective function is represented analytically, or the objective function is the result of a simulation experiment. The Simultaneous Perturbation Stochastic Approximation (SPSA) method has the advantage over similar methods of requiring only two measurements at each iteration of the search. This feature makes SPSA attractive for robust parameter design (RPD) problems where some factors affect the variance of the response(s) of interest. In this paper, the feasibility of SPSA as a RPD optimizer is presented, first when the objective function is known, and then when the objective function is estimated by means of a discrete-event simulation. Journal of the Operational Research Society (2011) 62, 198-205. doi:10.1057/jors.2009.163 Published online 10 February 2010
引用
收藏
页码:198 / 205
页数:8
相关论文
共 50 条
  • [1] Robust design of experiments using constrained stochastic optimization
    Popli, Khushaal
    Prasad, Vinay
    IFAC PAPERSONLINE, 2015, 48 (08): : 106 - 111
  • [2] Design of robust parameter experiments in a continuous space using an evolutionary optimization algorithm
    Santiago, Eduardo
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (06) : 825 - 847
  • [3] Robust Parameter Designs in Computer Experiments Using Stochastic Approximation
    Shen, Weijie
    TECHNOMETRICS, 2017, 59 (04) : 471 - 483
  • [4] THE DESIGN OF CONTROLLERS FOR THE MULTIVARIABLE ROBUST SERVOMECHANISM PROBLEM USING PARAMETER OPTIMIZATION METHODS
    DAVISON, EJ
    FERGUSON, IJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (01) : 93 - 100
  • [5] An augmented formulation for robust design optimization of structures using stochastic simulation method
    Khalid, Mohd Aman
    Bansal, Sahil
    Ramamohan, Varun
    RESEARCH IN ENGINEERING DESIGN, 2023, 34 (02) : 179 - 200
  • [6] An augmented formulation for robust design optimization of structures using stochastic simulation method
    Mohd Aman Khalid
    Sahil Bansal
    Varun Ramamohan
    Research in Engineering Design, 2023, 34 : 179 - 200
  • [7] ROBUST PARAMETER DESIGN OF DERIVATIVE OPTIMIZATION METHODS FOR IMAGE ACQUISITION USING A COLOR MIXER
    Kim, HyungTae
    Kim, SeungTaek
    Jin, KyungChan
    Kim, Jongseok
    Lee, SungHo
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 4A, 2016,
  • [8] Robust parameter design of derivative optimization methods for image acquisition using a color mixer
    Kim H.T.
    Cho K.Y.
    Kim J.
    Jin K.C.
    Kim S.T.
    Kim, Hyung Tae (htkim@kitech.re.kr), 2017, MDPI (03)
  • [9] Simulation optimization using stochastic kriging with robust statistics
    Ouyang, Linhan
    Han, Mei
    Ma, Yizhong
    Wang, Min
    Park, Chanseok
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2023, 74 (03) : 623 - 636
  • [10] Stochastic simulation and robust design optimization of integrated photonic filters
    Weng, Tsui-Wei
    Melati, Daniele
    Melloni, Andrea
    Daniel, Luca
    NANOPHOTONICS, 2017, 6 (01) : 299 - 308