Sampling-based algorithms for optimal motion planning

被引:3165
|
作者
Karaman, Sertac [1 ]
Frazzoli, Emilio [1 ]
机构
[1] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
来源
基金
美国国家科学基金会;
关键词
Motion planning; optimal path planning; sampling-based algorithms; random geometric graphs; PROBABILISTIC ROADMAPS; SEARCH; CONNECTIVITY; INTERSECTIONS; PERCOLATION; ROBOTS; SPACE; TREES;
D O I
10.1177/0278364911406761
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
During the last decade, sampling-based path planning algorithms, such as probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e. g. as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e. g. showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e. such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.
引用
收藏
页码:846 / 894
页数:49
相关论文
共 50 条
  • [31] Custom distribution for sampling-based motion planning
    Flores-Aquino, Gabriel O.
    Irving Vasquez-Gomez, J.
    Gutierrez-Frias, Octavio
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (03)
  • [32] Cache-Aware Asymptotically-Optimal Sampling-Based Motion Planning
    Ichnowski, Jeffrey
    Prins, Jan F.
    Alterovitz, Ron
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5804 - 5810
  • [33] Sensory Steering for Sampling-Based Motion Planning
    Arslan, Omur
    Pacelli, Vincent
    Koditschek, Daniel E.
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 3708 - 3715
  • [34] The critical radius in sampling-based motion planning
    Solovey, Kiril
    Kleinbort, Michal
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (2-3): : 266 - 285
  • [35] Custom distribution for sampling-based motion planning
    Gabriel O. Flores-Aquino
    J. Irving Vasquez-Gomez
    Octavio Gutierrez-Frias
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [36] Sampling-based Optimal Motion Planning for Non-holonomic Dynamical Systems
    Karaman, Sertac
    Frazzoli, Emilio
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 5041 - 5047
  • [37] Sampling-based motion planning with sensing uncertainty
    Burns, Brendan
    Brock, Oliver
    PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 3313 - +
  • [38] Group Marching Tree: Sampling-Based Approximately Optimal Motion Planning on GPUs
    Ichter, Brian
    Schmerling, Edward
    Pavone, Marco
    2017 FIRST IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC), 2017, : 219 - 226
  • [39] On the Performance of Sampling-Based Optimal Motion Planners
    Elbanhawi, Mohamed
    Simic, Milan
    UKSIM-AMSS SEVENTH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS 2013), 2013, : 73 - 78
  • [40] Asymptotically optimal sampling-based kinodynamic planning
    Li, Yanbo
    Littlefield, Zakary
    Bekris, Kostas E.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (05): : 528 - 564