Sampling-based algorithms for optimal motion planning

被引:3165
|
作者
Karaman, Sertac [1 ]
Frazzoli, Emilio [1 ]
机构
[1] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
来源
基金
美国国家科学基金会;
关键词
Motion planning; optimal path planning; sampling-based algorithms; random geometric graphs; PROBABILISTIC ROADMAPS; SEARCH; CONNECTIVITY; INTERSECTIONS; PERCOLATION; ROBOTS; SPACE; TREES;
D O I
10.1177/0278364911406761
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
During the last decade, sampling-based path planning algorithms, such as probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e. g. as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e. g. showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e. such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.
引用
收藏
页码:846 / 894
页数:49
相关论文
共 50 条
  • [1] Use of Relaxation Methods in Sampling-based Algorithms for Optimal Motion Planning
    Arslan, Oktay
    Tsiotras, Panagiotis
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 2421 - 2428
  • [2] Sampling-based Algorithms for Optimal Motion Planning with Deterministic μ-Calculus Specifications
    Karaman, Sertac
    Frazzoli, Emilio
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 735 - 742
  • [3] Sampling-based Algorithms for Optimal Motion Planning using Process Algebra Specifications
    Varricchio, Valerio
    Chaudhari, Pratik
    Frazzoli, Emilio
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5326 - 5332
  • [4] Asymptotically Optimal Sampling-Based Motion Planning Methods
    Gammell, Jonathan D.
    Strub, Marlin P.
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 4, 2021, 2021, 4 : 295 - 318
  • [5] Sampling-based optimal kinodynamic planning with motion primitives
    Sakcak, Basak
    Bascetta, Luca
    Ferretti, Gianni
    Prandini, Maria
    AUTONOMOUS ROBOTS, 2019, 43 (07) : 1715 - 1732
  • [6] Sampling-based optimal kinodynamic planning with motion primitives
    Basak Sakcak
    Luca Bascetta
    Gianni Ferretti
    Maria Prandini
    Autonomous Robots, 2019, 43 : 1715 - 1732
  • [7] A scalable method for parallelizing sampling-based motion planning algorithms
    Jacobs, Sam Ade
    Manavi, Kasra
    Burgos, Juan
    Denny, Jory
    Thomas, Shawna
    Amato, Nancy M.
    Proceedings - IEEE International Conference on Robotics and Automation, 2012, : 2529 - 2536
  • [8] A Scalable Method for Parallelizing Sampling-Based Motion Planning Algorithms
    Jacobs, Sam Ade
    Manavi, Kasra
    Burgos, Juan
    Denny, Jory
    Thomas, Shawna
    Amato, Nancy M.
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 2529 - 2536
  • [9] Sampling-Based Optimal Motion Planning With Smart Exploration and Exploitation
    Wang, Zhuping
    Li, Yunsong
    Zhang, Hao
    Liu, Chun
    Chen, Qijun
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (05) : 2376 - 2386
  • [10] Machine Learning Guided Exploration for Sampling-based Motion Planning Algorithms
    Arslan, Oktay
    Tsiotras, Panagiotis
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 2646 - 2652