Infinitely Many Hypohamiltonian Cubic Graphs of Girth 7

被引:10
|
作者
Macajova, Edita [1 ]
Skoviera, Martin [1 ]
机构
[1] Comenius Univ, Dept Comp Sci, Fac Math Phys & Informat, Bratislava 84248, Slovakia
关键词
Hypohamiltonian; Girth; Cubic graph; SNARKS;
D O I
10.1007/s00373-010-0968-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The trivalent Coxeter graph of order 28 is the only known hypohamiltonian cubic graph of girth 7. In this paper we will construct an infinite family of hypohamiltonian cubic graphs of girth 7 and cyclic connectivity 6. The existence of cyclically 7-edge-connected hypohamiltonian cubic graphs other than the Coxeter graph, however, remains open.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [21] Cubic vertex-transitive graphs of girth six
    Potacnik, Primoz
    Vidali, Janos
    DISCRETE MATHEMATICS, 2022, 345 (03)
  • [22] Some properties of hypohamiltonian graphs
    Katerinis P.
    aequationes mathematicae, 2006, 72 (1-2) : 139 - 151
  • [23] Girth Six Cubic Graphs Have Petersen Minors
    Robertson, Neil
    Seymour, P. D.
    Thomas, Robin
    COMBINATORICA, 2019, 39 (06) : 1413 - 1423
  • [24] Counting independent sets in cubic graphs of given girth
    Perarnau, Guillem
    Perkins, Will
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 133 : 211 - 242
  • [25] Small regular graphs of girth 7
    Abreu, M.
    Araujo-Pardo, G.
    Balbuena, C.
    Labbate, D.
    Salas, J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [26] Girth Six Cubic Graphs Have Petersen Minors
    Neil Robertson
    P. D. Seymour
    Robin Thomas
    Combinatorica, 2019, 39 : 1413 - 1423
  • [27] A complete classification of cubic symmetric graphs of girth 6
    Kutnar, Klavdija
    Marusic, Dragan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (01) : 162 - 184
  • [28] Domination and total domination in cubic graphs of large girth
    Dantas, Simone
    Joos, Felix
    Loewenstein, Christian
    Machado, Deiwison S.
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2014, 174 : 128 - 132
  • [29] On almost hypohamiltonian graphs
    Goedgebeur, Jan
    Zamfirescu, Carol T.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (04):
  • [30] Hypohamiltonian graphs and their crossing number
    Zamfirescu, Carol T.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):