Girth Six Cubic Graphs Have Petersen Minors

被引:0
|
作者
Neil Robertson
P. D. Seymour
Robin Thomas
机构
[1] Ohio State University,Department of Mathematics
[2] Princeton University,Department of Mathematics
[3] Georgia Institute of Technology,School of Mathematics
来源
Combinatorica | 2019年 / 39卷
关键词
05C75; 05C83;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every 3-regular graph with no circuit of length less than six has a subgraph isomorphic to a subdivision of the Petersen graph.
引用
收藏
页码:1413 / 1423
页数:10
相关论文
共 50 条
  • [1] Girth Six Cubic Graphs Have Petersen Minors
    Robertson, Neil
    Seymour, P. D.
    Thomas, Robin
    COMBINATORICA, 2019, 39 (06) : 1413 - 1423
  • [2] Cubic vertex-transitive graphs of girth six
    Potacnik, Primoz
    Vidali, Janos
    DISCRETE MATHEMATICS, 2022, 345 (03)
  • [3] Minors in graphs of large girth
    Kühn, D
    Osthus, D
    RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (02) : 213 - 225
  • [4] Circular edge-colorings of cubic graphs with girth six
    Kral, Daniel
    Macajova, Edita
    Mazak, Jan
    Sereni, Jean-Sebastien
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (04) : 351 - 358
  • [5] Most generalized Petersen graphs of girth 8 have cop number 4
    Morris, J. O. Y.
    Runte, Tigana
    Skelton, Adrian
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 83 : 204 - 224
  • [6] Dense minors in graphs of large girth
    Diestel R.
    Rempel C.
    Combinatorica, 2004, 25 (1) : 111 - 116
  • [7] Dense minors in graphs of large girth
    Diestel, R
    Rempel, C
    COMBINATORICA, 2005, 25 (01) : 111 - 116
  • [8] Topological minors in graphs of large girth
    Kühn, D
    Osthus, D
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 86 (02) : 364 - 380
  • [9] Minors in graphs of large θr-girth
    Chatzidimitriou, Dimitris
    Raymond, Jean-Florent
    Sau, Ignasi
    Thilikos, Dimitrios M.
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 65 : 106 - 121
  • [10] Excluded minors in cubic graphs
    Robertson, Neil
    Seymour, Paul
    Thomas, Robin
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 138 : 219 - 285