A Parabolic Flow of Pluriclosed Metrics

被引:159
|
作者
Streets, Jeffrey [1 ]
Tian, Gang [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
KAHLER-RICCI FLOW; SURFACES;
D O I
10.1093/imrn/rnp237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a parabolic flow of pluriclosed metrics. This flow is of the same family introduced by the authors in [15]. We study the relationship of the existence of the flow and associated static metrics to topological information on the underlying complex manifold. Solutions to the static equation are automatically Hermitian-symplectic, a condition we define herein. These static metrics are classified on K3 surfaces, complex toroidal surfaces, nonminimal Hopf surfaces, surfaces of general type, and class VII+ surfaces. To finish, we discuss how the flow may potentially be used to study the topology of class VII+ surfaces.
引用
收藏
页码:3101 / 3133
页数:33
相关论文
共 50 条
  • [31] Special metrics and scales in parabolic geometry
    Eastwood, Michael
    Zalabova, Lenka
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 62 (03) : 635 - 659
  • [32] Subriemannian Metrics and the Metrizability of Parabolic Geometries
    Calderbank, David M. J.
    Slovak, Jan
    Soucek, Vladimir
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1671 - 1702
  • [33] Subriemannian Metrics and the Metrizability of Parabolic Geometries
    David M. J. Calderbank
    Jan Slovák
    Vladimír Souček
    The Journal of Geometric Analysis, 2021, 31 : 1671 - 1702
  • [34] Special metrics and scales in parabolic geometry
    Michael Eastwood
    Lenka Zalabová
    Annals of Global Analysis and Geometry, 2022, 62 : 635 - 659
  • [35] Flow metrics
    Bornstein, CF
    Vempala, S
    THEORETICAL COMPUTER SCIENCE, 2004, 321 (01) : 13 - 24
  • [36] Flow metrics
    Bornstein, CF
    Vempala, S
    LATIN 2002: THEORETICAL INFORMATICS, 2002, 2286 : 516 - 527
  • [37] PARABOLIC GEOMETRIES AS CONFORMAL INFINITIES OF EINSTEIN METRICS
    Biquard, Olivier
    Mazzeo, Rafe
    ARCHIVUM MATHEMATICUM, 2006, 42 : 85 - 104
  • [38] Pluriclosed flow, Born-Infeld geometry, and rigidity results for generalized Kahler manifolds
    Streets, Jeffrey
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (02) : 318 - 374
  • [39] Global Stability of the Pluriclosed Flow on Compact Simply Connected Simple Lie Groups of Rank Two
    Barbaro, Giuseppe
    TRANSFORMATION GROUPS, 2022, 30 (1) : 53 - 71
  • [40] Pluriclosed Manifolds with Constant Holomorphic Sectional Curvature
    Pei Pei RAO
    Fang Yang ZHENG
    ActaMathematicaSinica,EnglishSeries, 2022, (06) : 1094 - 1104