A Parabolic Flow of Pluriclosed Metrics

被引:159
|
作者
Streets, Jeffrey [1 ]
Tian, Gang [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
KAHLER-RICCI FLOW; SURFACES;
D O I
10.1093/imrn/rnp237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a parabolic flow of pluriclosed metrics. This flow is of the same family introduced by the authors in [15]. We study the relationship of the existence of the flow and associated static metrics to topological information on the underlying complex manifold. Solutions to the static equation are automatically Hermitian-symplectic, a condition we define herein. These static metrics are classified on K3 surfaces, complex toroidal surfaces, nonminimal Hopf surfaces, surfaces of general type, and class VII+ surfaces. To finish, we discuss how the flow may potentially be used to study the topology of class VII+ surfaces.
引用
收藏
页码:3101 / 3133
页数:33
相关论文
共 50 条