Second order cones for maximal monotone operators via representative functions

被引:2
|
作者
Eberhard, A. C. [1 ]
Borwein, J. M. [2 ]
机构
[1] RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3001, Australia
[2] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 1W5, Canada
来源
SET-VALUED ANALYSIS | 2008年 / 16卷 / 2-3期
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
second order cones; maximal monotone operators; proto-differentiability;
D O I
10.1007/s11228-008-0075-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that various first and second order derivatives of the Fitzpatrick and Penot representative functions for a maximal monotone operator T, in a reflexive Banach space, can be used to represent differential information associated with the tangent and normal cones to the Graph T. In particular we obtain formula for the proto-derivative, as well as its polar, the normal cone to the graph of T. First order derivatives are shown to be useful in recognising points of single-valuedness of T. We show that a strong form of proto-differentiability to the graph of T, is often associated with single-valuedness of T.
引用
收藏
页码:157 / 184
页数:28
相关论文
共 50 条
  • [41] Approaching the Maximal Monotonicity of Bifunctions via Representative Functions
    Bot, Radu Ioan
    Grad, Sorin-Mihai
    JOURNAL OF CONVEX ANALYSIS, 2012, 19 (03) : 713 - 724
  • [42] A new condition for maximal monotonicity via representative functions
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    Wanka, Gert
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) : 2390 - 2402
  • [44] KERNELS OF MAXIMAL OPERATORS AND SIMPLICIAL CONES
    KUTATELA.SS
    DOKLADY AKADEMII NAUK SSSR, 1974, 216 (06): : 1219 - 1221
  • [45] A family of enlargements of maximal monotone operators
    Svaiter, BF
    SET-VALUED ANALYSIS, 2000, 8 (04): : 311 - 328
  • [46] Boundary of Maximal Monotone Operators Values
    Abderrahim Hantoute
    Bao Tran Nguyen
    Applied Mathematics & Optimization, 2020, 82 : 225 - 243
  • [47] Boundary of Maximal Monotone Operators Values
    Hantoute, Abderrahim
    Nguyen, Bao Tran
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 82 (01): : 225 - 243
  • [48] On the maximal monotone operators in Hadamard spaces
    Moslemipour, Ali
    Roohi, Mehdi
    Yao, Jen-Chih
    OPTIMIZATION, 2024,
  • [49] Differential equations with maximal monotone operators
    Benedetti, Irene
    Malaguti, Luisa
    Marques, Manuel D. P. Monteiro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 539 (01)
  • [50] CHARACTERIZATIONS OF MAXIMAL MONOTONE-OPERATORS
    VERONA, ME
    VERONA, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (10) : 977 - 982