Second order cones for maximal monotone operators via representative functions

被引:2
|
作者
Eberhard, A. C. [1 ]
Borwein, J. M. [2 ]
机构
[1] RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3001, Australia
[2] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 1W5, Canada
来源
SET-VALUED ANALYSIS | 2008年 / 16卷 / 2-3期
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
second order cones; maximal monotone operators; proto-differentiability;
D O I
10.1007/s11228-008-0075-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that various first and second order derivatives of the Fitzpatrick and Penot representative functions for a maximal monotone operator T, in a reflexive Banach space, can be used to represent differential information associated with the tangent and normal cones to the Graph T. In particular we obtain formula for the proto-derivative, as well as its polar, the normal cone to the graph of T. First order derivatives are shown to be useful in recognising points of single-valuedness of T. We show that a strong form of proto-differentiability to the graph of T, is often associated with single-valuedness of T.
引用
收藏
页码:157 / 184
页数:28
相关论文
共 50 条
  • [21] A second-order adaptive Douglas-Rachford dynamic method for maximal α-monotone operators
    Zhu, Ming
    Hu, Rong
    Fang, Ya-Ping
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (02)
  • [22] ON A SECOND-ORDER FUNCTIONAL EVOLUTION PROBLEM WITH TIME AND STATE DEPENDENT MAXIMAL MONOTONE OPERATORS
    Saidi, Soumia
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, : 1001 - 1035
  • [23] MONOTONE SEMIGROUPS OF OPERATORS ON CONES
    BOYD, DW
    CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (03): : 299 - &
  • [24] Existence via compactness for maximal monotone elliptic operators
    Gwiazda, P
    Zatorska-Goldstein, A
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (07) : 489 - 492
  • [25] Maximal monotone operators, convex functions and a special family of enlargements
    Burachik, RS
    Svaiter, BF
    SET-VALUED ANALYSIS, 2002, 10 (04): : 297 - 316
  • [26] Weighted Hardy type inequalities for supremum operators on the cones of monotone functions
    Lars-Erik Persson
    Guldarya E Shambilova
    Vladimir D Stepanov
    Journal of Inequalities and Applications, 2016
  • [27] Maximal Monotone Operators, Convex Functions and a Special Family of Enlargements
    Regina Sandra Burachik
    B. F. Svaiter
    Set-Valued Analysis, 2002, 10 : 297 - 316
  • [28] A proximal method for maximal monotone operators via discretization of a first order dissipative dynamical system
    Mainge, Paul-Emile
    Moudafi, Abdellatif
    JOURNAL OF CONVEX ANALYSIS, 2007, 14 (04) : 869 - 878
  • [29] Weighted Hardy type inequalities for supremum operators on the cones of monotone functions
    Persson, Lars-Erik
    Shambilova, Guldarya E.
    Stepanov, Vladimir D.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [30] Representable Monotone Operators and Limits of Sequences of Maximal Monotone Operators
    Garcia, Yboon
    Lassonde, Marc
    SET-VALUED AND VARIATIONAL ANALYSIS, 2012, 20 (01) : 61 - 73