The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae

被引:17
|
作者
Barraza, Carla E. [1 ]
Solari, Clara A. [1 ]
Marcovich, Irina [2 ]
Kershaw, Christopher [3 ]
Galello, Fiorella [1 ]
Rossi, Silvia [1 ]
Ashe, Mark P. [3 ]
Portela, Paula [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Biol, Inst Quim Biol,Fac Ciencias Exactas & Nat,Consejo, Buenos Aires, DF, Argentina
[2] Inst Invest Ingn Genet & Biol Mol Dr Hector N Tor, Buenos Aires, DF, Argentina
[3] Univ Manchester, Fac Life Sci, Michael Smith Bldg, Manchester, Lancs, England
来源
PLOS ONE | 2017年 / 12卷 / 10期
基金
英国生物技术与生命科学研究理事会;
关键词
CATALYTIC ISOFORMS; MESSENGER-RNAS; BUDDING YEAST; KINASE; GRANULES; SUBUNITS; PHOSPHORYLATION; LOCALIZATION; INITIATION; SEQUESTRATION;
D O I
10.1371/journal.pone.0185416
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules ( SGs) and processing bodies ( PBs). Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Response of Saccharomyces cerevisiae to stress-free acidification
    Chen, Allen Kuan-Liang
    Gelling, Cristy
    Rogers, Peter L.
    Dawes, Ian W.
    Rosche, Bettina
    JOURNAL OF MICROBIOLOGY, 2009, 47 (01) : 1 - 8
  • [42] The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae
    Stanley, D.
    Bandara, A.
    Fraser, S.
    Chambers, P. J.
    Stanley, G. A.
    JOURNAL OF APPLIED MICROBIOLOGY, 2010, 109 (01) : 13 - 24
  • [44] PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae
    Baccarini, Leticia
    Martinez-Montanes, Fernando
    Rossi, Silvia
    Proft, Markus
    Portela, Paula
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2015, 1849 (11): : 1329 - 1339
  • [45] Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae
    Junmei Ding
    Xiaowei Huang
    Lemin Zhang
    Na Zhao
    Dongmei Yang
    Keqin Zhang
    Applied Microbiology and Biotechnology, 2009, 85 : 253 - 263
  • [46] Regulation of mRNA export in response to stress in Saccharomyces cerevisiae
    Saavedra, C
    Tung, KS
    Amberg, DC
    Hopper, AK
    Cole, CN
    GENES & DEVELOPMENT, 1996, 10 (13) : 1608 - 1620
  • [47] Heat Stress-Induced Metabolic Remodeling in Saccharomyces cerevisiae
    Pan, Daqiang
    Wiedemann, Nils
    Kammerer, Bernd
    METABOLITES, 2019, 9 (11)
  • [48] Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae
    Payne, Tom
    Hanfrey, Colin
    Bishop, Amy L.
    Michael, Anthony J.
    Avery, Simon V.
    Archer, David B.
    FEBS LETTERS, 2008, 582 (04) : 503 - 509
  • [49] Crystallization of PKA regulatory subunit from Saccharomyces cerevisiae
    Julieta Rinaldi, Jimena
    Yang, Jie
    Rossi, Silvia
    Ganapathy, Sarma
    Moreno, Silvia
    Taylor, Susan
    FASEB JOURNAL, 2008, 22
  • [50] Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae
    Andrea Solari, Clara
    Tudisca, Vanesa
    Pugliessi, Marcelo
    Daniel Nadra, Alejandro
    Moreno, Silvia
    Portela, Paula
    BIOCHEMICAL JOURNAL, 2014, 462 : 567 - 579