The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae

被引:17
|
作者
Barraza, Carla E. [1 ]
Solari, Clara A. [1 ]
Marcovich, Irina [2 ]
Kershaw, Christopher [3 ]
Galello, Fiorella [1 ]
Rossi, Silvia [1 ]
Ashe, Mark P. [3 ]
Portela, Paula [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Biol, Inst Quim Biol,Fac Ciencias Exactas & Nat,Consejo, Buenos Aires, DF, Argentina
[2] Inst Invest Ingn Genet & Biol Mol Dr Hector N Tor, Buenos Aires, DF, Argentina
[3] Univ Manchester, Fac Life Sci, Michael Smith Bldg, Manchester, Lancs, England
来源
PLOS ONE | 2017年 / 12卷 / 10期
基金
英国生物技术与生命科学研究理事会;
关键词
CATALYTIC ISOFORMS; MESSENGER-RNAS; BUDDING YEAST; KINASE; GRANULES; SUBUNITS; PHOSPHORYLATION; LOCALIZATION; INITIATION; SEQUESTRATION;
D O I
10.1371/journal.pone.0185416
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules ( SGs) and processing bodies ( PBs). Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Activation of PKA by substrates from Saccharomyces cerevisiae
    Rossi, Silvia
    Galello, Fiorella
    Pautasso, Constanza
    Moreno, Silvia
    FASEB JOURNAL, 2008, 22
  • [32] Protein chaperones and the heat shock response in Saccharomyces cerevisiae
    Morano, KA
    Liu, PCC
    Thiele, DJ
    CURRENT OPINION IN MICROBIOLOGY, 1998, 1 (02) : 197 - 203
  • [33] The Saccharomyces cerevisiae response to oxidative stress:: integrative study on the role of the glyoxalase pathway.
    Martins, AM
    Mendes, P
    YEAST, 2003, 20 : S177 - S177
  • [34] Effect of environmental stress on radiation response of Saccharomyces cerevisiae
    Singh, RK
    Verma, NC
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 1999, 36 (05): : 296 - 298
  • [35] Response of Saccharomyces cerevisiae to stress-free acidification
    Allen Kuan-Liang Chen
    Cristy Gelling
    Peter L. Rogers
    Ian W. Dawes
    Bettina Rosche
    The Journal of Microbiology, 2009, 47 : 1 - 8
  • [36] Linearity range of the hyperosmotic stress response in Saccharomyces cerevisiae
    Petelenz-Kurdziel, E.
    Babazadeh, R.
    Beck, C.
    Smedh, M.
    Eriksson, E.
    Goksar, M.
    Hohmann, S.
    FEBS JOURNAL, 2010, 277 : 144 - 145
  • [37] Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress
    Ma, Manli
    Han, Pei
    Zhang, Ruimin
    Li, Hao
    CANADIAN JOURNAL OF MICROBIOLOGY, 2013, 59 (09) : 589 - 597
  • [38] Adaptive response of Saccharomyces cerevisiae to hyperosmotic and oxidative stress
    Lu, FP
    Wang, Y
    Bai, DQ
    Du, LX
    PROCESS BIOCHEMISTRY, 2005, 40 (11) : 3614 - 3618
  • [39] Metabolomic analysis of acid stress response in Saccharomyces cerevisiae
    Nugroho, Riyanto Heru
    Yoshikawa, Katsunori
    Shimizu, Hiroshi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2015, 120 (04) : 396 - 404
  • [40] Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae
    Ding, Junmei
    Huang, Xiaowei
    Zhang, Lemin
    Zhao, Na
    Yang, Dongmei
    Zhang, Keqin
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 85 (02) : 253 - 263