Penalized multiply robust estimation in high-order autoregressive processes with missing explanatory variables

被引:1
|
作者
Xiong, Wei [1 ,2 ]
Wang, Dehui [3 ]
Deng, Dianliang [2 ]
Wang, Xinyang [4 ]
Zhang, Wanying [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Liaoning Univ, Sch Econ, Shenyang 110036, Peoples R China
[4] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Missing at random (MAR); Model misspecification; Multiple robustness; Time series; EMPIRICAL LIKELIHOOD; ADAPTIVE LASSO; LEAST-SQUARES; SELECTION; COEFFICIENT; MODEL;
D O I
10.1016/j.jmva.2021.104867
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiply robust estimation with missing data is considered as an important field in statistics, which incorporates information by weighting multiply candidate models and loosens the requirement of the model specification. Nevertheless, in high-dimensional cases one more flexible hypothesis is the "true structure"beyond the correct model. In this paper, we study the parametric estimation for high-order autoregressive processes with a lagged-dependent binary explanatory variable that is missing at random (MAR). Based on the "true structure"specification, we propose a penalized multiply robust estimation equation in the presence of multiply candidate model sets. The selecting criterion for optimal tuning parameters is modified for the model identification with incomplete data. We validate that our tuning criterion can correctly distinguish the true autoregressive coefficients from zero asymptotically, the estimators of population parameters enjoy the oracle properties as well. Some simulations are carried out and we apply the method to fit the model for the U.S. Industrial Production Index data and produce out-of-sample forecasts to confirm the rationality of results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Distributed Optimization for Multiply High-Order Nonlinear Local Cost Functions
    Wu, Shengshuai
    Zhao, Yu
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 39 - 43
  • [42] Separation of Variables for Function Generated High-Order Tensors
    M. Bebendorf
    C. Kuske
    Journal of Scientific Computing, 2014, 61 : 145 - 165
  • [43] Infinite-order cointegrated vector autoregressive processes - Estimation and inference
    Saikkonen, P
    Lutkepohl, H
    ECONOMETRIC THEORY, 1996, 12 (05) : 814 - 844
  • [44] Separation of Variables for Function Generated High-Order Tensors
    Bebendorf, M.
    Kuske, C.
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (01) : 145 - 165
  • [45] UNSUPERVISED LEARNING OF ASYMMETRIC HIGH-ORDER AUTOREGRESSIVE STOCHASTIC VOLATILITY MODEL
    Gorynin, Ivan
    Monfrini, Emmanuel
    Pieczynski, Wojciech
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4780 - 4784
  • [46] System identification of mechanical structures by a high-order multivariate autoregressive model
    He, X
    DeRoeck, G
    COMPUTERS & STRUCTURES, 1997, 64 (1-4) : 341 - 351
  • [47] High-order approximation of Pearson diffusion processes
    Leonenko, G. M.
    Phillips, T. N.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (11) : 2853 - 2868
  • [48] Consistent estimation and order selection for nonstationary autoregressive processes with stable innovations
    Burridge, Peter
    Hristova, Daniela
    JOURNAL OF TIME SERIES ANALYSIS, 2008, 29 (04) : 695 - 718
  • [49] Multidimensional Real Dynamics for High-Order Processes
    Cordero, Alicia
    Maimó, Javier G.
    Torregrosa, Juan R.
    Vassileva, Maria P.
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, 11386 LNCS : 201 - 207
  • [50] Sparse Transition Matrix Estimation for Sub-Gaussian Autoregressive Processes with Missing Data
    Jalali, Amin
    Willett, Rebecca
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 1881 - 1886