Penalized multiply robust estimation in high-order autoregressive processes with missing explanatory variables

被引:1
|
作者
Xiong, Wei [1 ,2 ]
Wang, Dehui [3 ]
Deng, Dianliang [2 ]
Wang, Xinyang [4 ]
Zhang, Wanying [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Liaoning Univ, Sch Econ, Shenyang 110036, Peoples R China
[4] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Missing at random (MAR); Model misspecification; Multiple robustness; Time series; EMPIRICAL LIKELIHOOD; ADAPTIVE LASSO; LEAST-SQUARES; SELECTION; COEFFICIENT; MODEL;
D O I
10.1016/j.jmva.2021.104867
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiply robust estimation with missing data is considered as an important field in statistics, which incorporates information by weighting multiply candidate models and loosens the requirement of the model specification. Nevertheless, in high-dimensional cases one more flexible hypothesis is the "true structure"beyond the correct model. In this paper, we study the parametric estimation for high-order autoregressive processes with a lagged-dependent binary explanatory variable that is missing at random (MAR). Based on the "true structure"specification, we propose a penalized multiply robust estimation equation in the presence of multiply candidate model sets. The selecting criterion for optimal tuning parameters is modified for the model identification with incomplete data. We validate that our tuning criterion can correctly distinguish the true autoregressive coefficients from zero asymptotically, the estimators of population parameters enjoy the oracle properties as well. Some simulations are carried out and we apply the method to fit the model for the U.S. Industrial Production Index data and produce out-of-sample forecasts to confirm the rationality of results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Extreme values of the uniform order 1 autoregressive processes and missing observations
    Lenka Glavaš
    Pavle Mladenović
    Gennady Samorodnitsky
    Extremes, 2017, 20 : 671 - 690
  • [22] Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals
    Dufera, Bisrat Derebssa
    Eneman, Koen
    van Waterschoot, Toon
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2464 - 2468
  • [23] Robust estimation of periodic autoregressive processes in the presence of additive outliers
    Sarnaglia, A. J. Q.
    Reisen, V. A.
    Levy-Leduc, C.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (09) : 2168 - 2183
  • [24] Robust high-order repetitive control
    Pipeleers, Goele
    Demeulenaere, Bram
    De Schutter, Joris
    Swevers, Jan
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 1080 - 1085
  • [25] Robust estimation of high-order phase dynamics using Variational Bayes inference
    Fabozzi, Fabio
    Bidon, Stephanie
    Roche, Sebastien
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4980 - 4984
  • [26] ROBUST ESTIMATION OF THE 1ST-ORDER AUTOREGRESSIVE PARAMETER
    DENBY, L
    MARTIN, RD
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (365) : 140 - 146
  • [27] ROBUST ESTIMATION OF AUTOREGRESSIVE PROCESSES BY FUNCTIONAL LEAST SQUARES.
    Heathcote, C.R.
    Welsh, A.H.
    1600, (20):
  • [28] THE ROBUST ESTIMATION OF AUTOREGRESSIVE PROCESSES BY FUNCTIONAL LEAST-SQUARES
    HEATHCOTE, CR
    WELSH, AH
    JOURNAL OF APPLIED PROBABILITY, 1983, 20 (04) : 737 - 753
  • [29] Robust Estimation of Transition Matrices in High Dimensional Heavy-tailed Vector Autoregressive Processes
    Qiu, Huitong
    Xu, Sheng
    Han, Fang
    Liu, Han
    Caffo, Brian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1843 - 1851
  • [30] On high-order discrete derivatives of stochastic variables
    Moriya, N.
    APPLIED MATHEMATICAL MODELLING, 2006, 30 (09) : 816 - 823