Penalized multiply robust estimation in high-order autoregressive processes with missing explanatory variables

被引:1
|
作者
Xiong, Wei [1 ,2 ]
Wang, Dehui [3 ]
Deng, Dianliang [2 ]
Wang, Xinyang [4 ]
Zhang, Wanying [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Liaoning Univ, Sch Econ, Shenyang 110036, Peoples R China
[4] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Missing at random (MAR); Model misspecification; Multiple robustness; Time series; EMPIRICAL LIKELIHOOD; ADAPTIVE LASSO; LEAST-SQUARES; SELECTION; COEFFICIENT; MODEL;
D O I
10.1016/j.jmva.2021.104867
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiply robust estimation with missing data is considered as an important field in statistics, which incorporates information by weighting multiply candidate models and loosens the requirement of the model specification. Nevertheless, in high-dimensional cases one more flexible hypothesis is the "true structure"beyond the correct model. In this paper, we study the parametric estimation for high-order autoregressive processes with a lagged-dependent binary explanatory variable that is missing at random (MAR). Based on the "true structure"specification, we propose a penalized multiply robust estimation equation in the presence of multiply candidate model sets. The selecting criterion for optimal tuning parameters is modified for the model identification with incomplete data. We validate that our tuning criterion can correctly distinguish the true autoregressive coefficients from zero asymptotically, the estimators of population parameters enjoy the oracle properties as well. Some simulations are carried out and we apply the method to fit the model for the U.S. Industrial Production Index data and produce out-of-sample forecasts to confirm the rationality of results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On robust estimation in the first order autoregressive processes
    Haddad, JN
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (01) : 45 - 54
  • [2] Bayesian estimation for first-order autoregressive model with explanatory variables
    Yang, Kai
    Wang, Dehui
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 11214 - 11227
  • [3] Robust estimation with discrete explanatory variables
    Cízek, P
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 509 - 514
  • [4] HIGH-ORDER EFFICIENCY IN THE ESTIMATION OF LINEAR PROCESSES
    HOSOYA, Y
    ANNALS OF STATISTICS, 1979, 7 (03): : 516 - 530
  • [5] Multiply Robust Estimation in Regression Analysis With Missing Data
    Han, Peisong
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (507) : 1159 - 1173
  • [6] Multiply robust estimation in nonparametric regression with missing data
    Sun, Yilun
    Wang, Lu
    Han, Peisong
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (01) : 73 - 92
  • [7] Multivariate threshold integer-valued autoregressive processes with explanatory variables
    Yang, Kai
    Xu, Nuo
    Li, Han
    Zhao, Yiwei
    Dong, Xiaogang
    APPLIED MATHEMATICAL MODELLING, 2023, 124 : 142 - 166
  • [8] Resampling for Order Estimation of Autoregressive Models with Missing Data
    El Matouat, Abdelaziz
    Moussa, Freedath Djibril
    Hamzaoui, Hassania
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (05) : 1187 - 1196
  • [9] Multiply Robust Estimation of Quantile Treatment Effects with Missing Responses
    Wang, Xiaorui
    Qin, Guoyou
    Tang, Yanlin
    Wang, Yinfeng
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023,
  • [10] Multiply robust estimation of the average treatment effect with missing outcomes
    Wei, Kecheng
    Qin, Guoyou
    Zhang, Jiajia
    Sui, Xuemei
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (10) : 1479 - 1495