Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation

被引:0
|
作者
Berk, Julian [1 ]
Gupta, Sunil [1 ]
Rana, Santu [1 ]
Venkatesh, Svetha [1 ]
机构
[1] Appl Artificial Intelligence Inst, Burwood, Vic, Australia
基金
澳大利亚研究理事会;
关键词
EFFICIENT GLOBAL OPTIMIZATION; CONVERGENCE-RATES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve the performance of Bayesian optimisation, we develop a modified Gaussian process upper confidence bound (GP-UCB) acquisition function. This is done by sampling the exploration-exploitation trade-off parameter from a distribution. We prove that this allows the expected trade-off parameter to be altered to better suit the problem without compromising a bound on the function's Bayesian regret. We also provide results showing that our method achieves better performance than GP-UCB in a range of real-world and synthetic problems.
引用
收藏
页码:2284 / 2290
页数:7
相关论文
共 50 条
  • [41] Upper bound for variational free energy of Bayesian networks
    Kazuho Watanabe
    Motoki Shiga
    Sumio Watanabe
    Machine Learning, 2009, 75 : 199 - 215
  • [42] Accounting for Gaussian Process Imprecision in Bayesian Optimization
    Rodemann, Julian
    Augustin, Thomas
    INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING (IUKM 2022), 2022, 13199 : 92 - 104
  • [43] Bayesian Upper Bound on GNSS Posterior Integrity Risk
    Wang, Shizhuang
    Zhan, Xingqun
    Zhai, Yawei
    Wang, Hanyu
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (06) : 7945 - 7961
  • [44] Upper bound for variational free energy of Bayesian networks
    Watanabe, Kazuho
    Shiga, Motoki
    Watanabe, Sumio
    MACHINE LEARNING, 2009, 75 (02) : 199 - 215
  • [45] Quantum Gaussian process regression for Bayesian optimization
    Rapp, Frederic
    Roth, Marco
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [46] Bayesian Data Analysis for Gaussian Process Tomography
    Wang, T.
    Mazon, D.
    Svensson, J.
    Liu, A.
    Zhou, C.
    Xu, L.
    Hu, L.
    Duan, Y.
    Verdoolaege, G.
    JOURNAL OF FUSION ENERGY, 2019, 38 (3-4) : 445 - 457
  • [47] Bayesian generative kernel Gaussian process regression
    Kuok, Sin-Chi
    Yao, Shuang-Ao
    Yuen, Ka-Veng
    Yan, Wang-Ji
    Girolami, Mark
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 227
  • [48] Bayesian Data Analysis for Gaussian Process Tomography
    T. Wang
    D. Mazon
    J. Svensson
    A. Liu
    C. Zhou
    L. Xu
    L. Hu
    Y. Duan
    G. Verdoolaege
    Journal of Fusion Energy, 2019, 38 : 445 - 457
  • [49] Multi-fidelity Gaussian Process Bandit Optimisation
    Kandasamy, Kirthevasan
    Dasarathy, Gautam
    Oliva, Junier
    Schneider, Jeff
    Poczos, Barnabas
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2019, 66 : 151 - 196
  • [50] Bayesian Multitask Classification with Gaussian Process Priors
    Skolidis, Grigorios
    Sanguinetti, Guido
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 2011 - 2021