Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation

被引:0
|
作者
Berk, Julian [1 ]
Gupta, Sunil [1 ]
Rana, Santu [1 ]
Venkatesh, Svetha [1 ]
机构
[1] Appl Artificial Intelligence Inst, Burwood, Vic, Australia
基金
澳大利亚研究理事会;
关键词
EFFICIENT GLOBAL OPTIMIZATION; CONVERGENCE-RATES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve the performance of Bayesian optimisation, we develop a modified Gaussian process upper confidence bound (GP-UCB) acquisition function. This is done by sampling the exploration-exploitation trade-off parameter from a distribution. We prove that this allows the expected trade-off parameter to be altered to better suit the problem without compromising a bound on the function's Bayesian regret. We also provide results showing that our method achieves better performance than GP-UCB in a range of real-world and synthetic problems.
引用
收藏
页码:2284 / 2290
页数:7
相关论文
共 50 条
  • [21] Process-constrained batch Bayesian Optimisation
    Vellanki, Pratibha
    Rana, Santu
    Gupta, Sunil
    Rubin, David
    Sutti, Alessandra
    Dorin, Thomas
    Height, Murray
    Sandars, Paul
    Venkatesh, Svetha
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [22] Bayesian Hyperparameter Estimation using Gaussian Process and Bayesian Optimization
    Katakami, Shun
    Sakamoto, Hirotaka
    Okada, Masato
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (07)
  • [23] A new upper bound on the reliability function of the Gaussian channel
    Ashikhmin, A
    Barg, A
    Litsyn, S
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 458 - 458
  • [24] A new upper bound on the reliability function of the Gaussian channel
    Ashikhmin, A.
    Barg, A.
    Litsyn, S.
    IEEE International Symposium on Information Theory - Proceedings, 2000,
  • [25] A new upper bound on the reliability function of the Gaussian channel
    Ashikhmin, AE
    Barg, A
    Litsyn, SN
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (06) : 1945 - 1961
  • [26] A Gaussian upper bound for Gaussian multi-stage stochastic linear programs
    Schweitzer, E
    Avriel, M
    MATHEMATICAL PROGRAMMING, 1997, 77 (01) : 1 - 21
  • [27] A gaussian upper bound for gaussian multi-stage stochastic linear programs
    Eithan Schweitzer
    Mordecai Avriel
    Mathematical Programming, 1997, 77 : 1 - 21
  • [28] New Approximate Bayesian Confidence Intervals for the Coefficient of Variation of a Gaussian Distribution
    Camara, Vincent A. R.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2012, 11 (01) : 158 - 166
  • [29] Asynchronous Upper Confidence Bound Algorithms for Federated Linear Bandits
    Li, Chuanhao
    Wang, Hongning
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151 : 6529 - 6553
  • [30] Upper Confidence Bound Learning Approach for Real HF Measurements
    Melian-Gutierrez, Laura
    Modi, Navikkumar
    Moy, Christophe
    Perez-Alvarez, Ivan
    Bader, Faouzi
    Zazo, Santiago
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION WORKSHOP (ICCW), 2015, : 381 - 386