Toric ideals of phylogenetic invariants

被引:95
|
作者
Sturmfels, B [1 ]
Sullivant, S [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1089/cmb.2005.12.204
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Statistical models of evolution are algebraic varieties in the space of joint probability distributions on the leaf colorations of a phylogenetic tree. The phylogenetic invariants of a model are the polynomials which vanish on the variety. Several widely used models for biological sequences have transition matrices that can be diagonalized by means of the Fourier transform of an abelian group. Their phylogenetic invariants form a toric ideal in the Fourier coordinates. We determine generators and Grobner bases for these toric ideals. For the Jukes-Cantor and Kimura models on a binary tree, our Grobner bases consist of certain explicitly constructed polynomials of degree at most four.
引用
收藏
页码:204 / 228
页数:25
相关论文
共 50 条
  • [41] Toric ideals generated by quadratic binomials
    Ohsugi, H
    Hibi, T
    JOURNAL OF ALGEBRA, 1999, 218 (02) : 509 - 527
  • [42] On the toric ideals of matroids of a fixed rank
    Michał Lasoń
    Selecta Mathematica, 2021, 27
  • [43] Graphs and complete intersection toric ideals
    Bermejo, I.
    Garcia-Marco, I.
    Reyes, E.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (09)
  • [44] Computation of Janet Bases for Toric Ideals
    Yu. A. Blinkov
    Programming and Computer Software, 2002, 28 : 290 - 292
  • [45] Vanishing for Hodge ideals on toric varieties
    Dutta, Yajnaseni
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (01) : 79 - 87
  • [46] On complete intersection toric ideals of graphs
    Christos Tatakis
    Apostolos Thoma
    Journal of Algebraic Combinatorics, 2013, 38 : 351 - 370
  • [47] On the toric ideals of matroids of a fixed rank
    Lason, Michal
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [48] Toric ideals of simple surface singularities
    Kaya, Gulay
    Mete, Pinar
    Sahin, Mesut
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (05): : 1057 - 1069
  • [49] GROBNER BASES OF SIMPLICIAL TORIC IDEALS
    Hellus, Michael
    Hoa, Le Tuan
    Stueckrad, Juergen
    NAGOYA MATHEMATICAL JOURNAL, 2009, 196 : 67 - 85
  • [50] Generalized Reduction to Compute Toric Ideals
    Kesh, Deepanjan
    Mehta, Shashank K.
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 483 - 492