Statistical models of evolution are algebraic varieties in the space of joint probability distributions on the leaf colorations of a phylogenetic tree. The phylogenetic invariants of a model are the polynomials which vanish on the variety. Several widely used models for biological sequences have transition matrices that can be diagonalized by means of the Fourier transform of an abelian group. Their phylogenetic invariants form a toric ideal in the Fourier coordinates. We determine generators and Grobner bases for these toric ideals. For the Jukes-Cantor and Kimura models on a binary tree, our Grobner bases consist of certain explicitly constructed polynomials of degree at most four.
机构:
Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Saratov 410071, RussiaSaratov NG Chernyshevskii State Univ, Dept Mech & Math, Saratov 410071, Russia
机构:
Hobart & William Smith Coll, Dept Math & Comp Sci, 300 Pulteney St, Geneva, NY 14456 USAHobart & William Smith Coll, Dept Math & Comp Sci, 300 Pulteney St, Geneva, NY 14456 USA
Biermann, Jennifer
Kara, Selvi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utah, Dept Math, 155 S 1400 E, Salt Lake City, UT 84112 USAHobart & William Smith Coll, Dept Math & Comp Sci, 300 Pulteney St, Geneva, NY 14456 USA
Kara, Selvi
Lin, Kuei-Nuan
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ Greater Allegheny, Dept Math, 4000 Univ Dr, Mckeesport, PA 15132 USAHobart & William Smith Coll, Dept Math & Comp Sci, 300 Pulteney St, Geneva, NY 14456 USA
Lin, Kuei-Nuan
O'Keefe, Augustine
论文数: 0引用数: 0
h-index: 0
机构:
Connecticut Coll, Dept Math & Stat, 270 Mohegan Ave Pkwy, New London, CT 06320 USAHobart & William Smith Coll, Dept Math & Comp Sci, 300 Pulteney St, Geneva, NY 14456 USA