Toric ideals of phylogenetic invariants

被引:95
|
作者
Sturmfels, B [1 ]
Sullivant, S [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1089/cmb.2005.12.204
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Statistical models of evolution are algebraic varieties in the space of joint probability distributions on the leaf colorations of a phylogenetic tree. The phylogenetic invariants of a model are the polynomials which vanish on the variety. Several widely used models for biological sequences have transition matrices that can be diagonalized by means of the Fourier transform of an abelian group. Their phylogenetic invariants form a toric ideal in the Fourier coordinates. We determine generators and Grobner bases for these toric ideals. For the Jukes-Cantor and Kimura models on a binary tree, our Grobner bases consist of certain explicitly constructed polynomials of degree at most four.
引用
收藏
页码:204 / 228
页数:25
相关论文
共 50 条
  • [1] Toric ideals of phylogenetic invariants (vol 12, pg 204, yr 2005)
    Sturmfels, B
    Sullivant, S
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2005, 12 (06) : 907 - 907
  • [2] Dimensional Analysis Using Toric Ideals: Primitive Invariants
    Atherton, Mark A.
    Bates, Ronald A.
    Wynn, Henry P.
    PLOS ONE, 2014, 9 (12):
  • [3] Toric ideals of phylogenetic invariants for the general group-based model on claw trees K1,n
    Chifman, Julia
    Petrovic, Sonja
    ALGEBRAIC BIOLOGY, PROCEEDINGS, 2007, 4545 : 307 - +
  • [4] Degenerations of toric ideals and toric varieties
    Zhu, Chun-Gang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) : 613 - 618
  • [5] Computing toric ideals
    Bigatti, AM
    Scala, R
    Robbiano, L
    JOURNAL OF SYMBOLIC COMPUTATION, 1999, 27 (04) : 351 - 365
  • [6] Splittings of toric ideals
    Favacchio, Giuseppe
    Hofscheier, Johannes
    Keiper, Graham
    Van Tuyl, Adam
    JOURNAL OF ALGEBRA, 2021, 574 : 409 - 433
  • [7] Robust toric ideals
    Boocher, Adam
    Robeva, Elina
    JOURNAL OF SYMBOLIC COMPUTATION, 2015, 68 : 254 - 264
  • [8] TORIC IDEALS AND THEIR CIRCUITS
    Ohsugi, Hidefumi
    Hibi, Takayuki
    JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (02) : 309 - 322
  • [9] TORIC IDEALS FOR HIGH VERONESE SUBRINGS OF TORIC ALGEBRAS
    Shibuta, Takafumi
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (03) : 895 - 905
  • [10] Modal operators and toric ideals
    Camerlo, Riccardo
    Pistone, Giovanni
    Rapallo, Fabio
    JOURNAL OF LOGIC AND COMPUTATION, 2019, 29 (05) : 577 - 593