A FAST INCREMENTAL MULTILINEAR PRINCIPAL COMPONENT ANALYSIS ALGORITHM

被引:0
|
作者
Wang, Jin [1 ]
Barreto, Armando [1 ]
Rishe, Naphtali [2 ]
Andrian, Jean [1 ]
Adjouadi, Malek [1 ]
机构
[1] Florida Int Univ, Dept Elect & Comp Engn, Miami, FL 33199 USA
[2] Florida Int Univ, Sch Comp & Informat Sci, Miami, FL 33199 USA
基金
美国国家科学基金会;
关键词
Multilinear principal component analysis; Fast principal component analysis; Incremental subspace learning; Sequential Karhunen-Loeve algorithm; Mean update; APPROXIMATION; DECOMPOSITION; TRACKING; MACHINE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study establishes the mathematical foundation for a fast incremental multilinear method which combines the traditional sequential Karhunen-Loeve (SKL) algorithm with the newly developed incremental modified fast Principal Component Analysis algorithm (IMFPCA). In accordance with the characteristics of the data structure, the proposed algorithm achieves both computational efficiency and high accuracy for incremental subspace updating. Moreover, the theoretical foundation is analyzed in detail as to the competing aspects of IMFPCA and SKL with respect to the different data unfolding schemes. Besides the general experiments designed to test the performance of the proposed algorithm, incremental face recognition system was developed as a real-world application for the proposed algorithm.
引用
收藏
页码:6019 / 6040
页数:22
相关论文
共 50 条
  • [1] A fast algorithm for incremental principal component analysis
    Hwang, WS
    Zhang, YL
    Hwang, WS
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 876 - 881
  • [2] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [3] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [4] Online multilinear principal component analysis
    Han, Le
    Wu, Zhen
    Zeng, Kui
    Yang, Xiaowei
    NEUROCOMPUTING, 2018, 275 : 888 - 896
  • [5] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [6] A Fast Incremental Kernel Principal Component Analysis for Data Streams
    Joseph, Annie Anak
    Ozawa, Seiichi
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3135 - 3142
  • [7] A Fast Incremental Kernel Principal Component Analysis for Online Feature Extraction
    Ozawa, Seiichi
    Takeuchi, Yohei
    Abe, Shigeo
    PRICAI 2010: TRENDS IN ARTIFICIAL INTELLIGENCE, 2010, 6230 : 487 - 497
  • [8] Cosine Multilinear Principal Component Analysis for Recognition
    Han, Feng
    Leng, Chengcai
    Li, Bing
    Basu, Anup
    Jiao, Licheng
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (06) : 1620 - 1630
  • [9] Uncorrelated Multilinear Principal Component Analysis for Unsupervised Multilinear Subspace Learning
    Lu, Haiping
    Plataniotis, Konstantinos N.
    Venetsanopoulos, Anastasios N.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (11): : 1820 - 1836
  • [10] A MATLAB IMPLEMENTATION OF A FAST INCREMENTAL PRINCIPAL COMPONENT PURSUIT ALGORITHM FOR VIDEO BACKGROUND MODELING
    Rodriguez, Paul
    Wohlberg, Brendt
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3414 - 3416