Uncorrelated Multilinear Principal Component Analysis for Unsupervised Multilinear Subspace Learning

被引:80
|
作者
Lu, Haiping [1 ]
Plataniotis, Konstantinos N. [1 ]
Venetsanopoulos, Anastasios N. [1 ,2 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] Ryerson Univ, Toronto, ON M5B 2K3, Canada
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2009年 / 20卷 / 11期
关键词
Dimensionality reduction; face recognition; feature extraction; gait recognition; multilinear principal component analysis (MPCA); tensor objects; uncorrelated features; DISCRIMINANT-ANALYSIS; RECOGNITION; REDUCTION;
D O I
10.1109/TNN.2009.2031144
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an uncorrelated multilinear principal component analysis (UMPCA) algorithm for unsupervised subspace learning of tensorial data. It should be viewed as a multilinear extension of the classical principal component analysis (PCA) framework. Through successive variance maximization, UMPCA seeks a tensor-to-vector projection (TVP) that captures most of the variation in the original tensorial input while producing uncorrelated features. The solution consists of sequential iterative steps based on the alternating projection method. In addition to deriving the UMPCA framework, this work offers a way to systematically determine the maximum number of uncorrelated multilinear features that can be extracted by the method. UMPCA is compared against the baseline PCA solution and its five state-of-the-art multilinear extensions, namely two-dimensional PCA (2DPCA), concurrent subspaces analysis (CSA), tensor rank-one decomposition (TROD), generalized PCA (GPCA), and multilinear PCA (MPCA), on the tasks of unsupervised face and gait recognition. Experimental results included in this paper suggest that UMPCA is particularly effective in determining the low-dimensional projection space needed in such recognition tasks.
引用
收藏
页码:1820 / 1836
页数:17
相关论文
共 50 条
  • [1] Online multilinear principal component analysis
    Han, Le
    Wu, Zhen
    Zeng, Kui
    Yang, Xiaowei
    NEUROCOMPUTING, 2018, 275 : 888 - 896
  • [2] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [3] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [4] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [5] Monitoring and diagnosis of multichannel nonlinear profile variations using uncorrelated multilinear principal component analysis
    Paynabar, Kamran
    Jin, Jionghua
    Pacella, Massimo
    IIE TRANSACTIONS, 2013, 45 (11) : 1235 - 1247
  • [6] Cosine Multilinear Principal Component Analysis for Recognition
    Han, Feng
    Leng, Chengcai
    Li, Bing
    Basu, Anup
    Jiao, Licheng
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (06) : 1620 - 1630
  • [7] A FAST INCREMENTAL MULTILINEAR PRINCIPAL COMPONENT ANALYSIS ALGORITHM
    Wang, Jin
    Barreto, Armando
    Rishe, Naphtali
    Andrian, Jean
    Adjouadi, Malek
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (10): : 6019 - 6040
  • [8] Multilinear kernel principal component analysis for ear recognition
    Wang, Xiao-Yun
    Liu, Feng-Li
    DESIGN, MANUFACTURING AND MECHATRONICS (ICDMM 2015), 2016, : 857 - 866
  • [9] The generalized degrees of freedom of multilinear principal component analysis
    Tu, I-Ping
    Huang, Su-Yun
    Hsieh, Dai-Ni
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 26 - 37
  • [10] MPCA: Multilinear principal component analysis of tensor objects
    Lu, Haiping
    Konstantinos, N. Platardotis
    Venetsanopoulos, Anastasios N.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (01): : 18 - 39