A FAST INCREMENTAL MULTILINEAR PRINCIPAL COMPONENT ANALYSIS ALGORITHM

被引:0
|
作者
Wang, Jin [1 ]
Barreto, Armando [1 ]
Rishe, Naphtali [2 ]
Andrian, Jean [1 ]
Adjouadi, Malek [1 ]
机构
[1] Florida Int Univ, Dept Elect & Comp Engn, Miami, FL 33199 USA
[2] Florida Int Univ, Sch Comp & Informat Sci, Miami, FL 33199 USA
基金
美国国家科学基金会;
关键词
Multilinear principal component analysis; Fast principal component analysis; Incremental subspace learning; Sequential Karhunen-Loeve algorithm; Mean update; APPROXIMATION; DECOMPOSITION; TRACKING; MACHINE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study establishes the mathematical foundation for a fast incremental multilinear method which combines the traditional sequential Karhunen-Loeve (SKL) algorithm with the newly developed incremental modified fast Principal Component Analysis algorithm (IMFPCA). In accordance with the characteristics of the data structure, the proposed algorithm achieves both computational efficiency and high accuracy for incremental subspace updating. Moreover, the theoretical foundation is analyzed in detail as to the competing aspects of IMFPCA and SKL with respect to the different data unfolding schemes. Besides the general experiments designed to test the performance of the proposed algorithm, incremental face recognition system was developed as a real-world application for the proposed algorithm.
引用
收藏
页码:6019 / 6040
页数:22
相关论文
共 50 条
  • [21] Multilinear Principal Component Analysis of tensor objects for recognition
    Lu, Haiping
    Plataniotis, K. N.
    Venetsanopoulos, A. N.
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 776 - +
  • [22] FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component Analysis
    Gang, Arpita
    Bajwa, Waheed U.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 6080 - 6095
  • [23] A subspace type incremental two-dimensional principal component analysis algorithm
    Zhang, Xiaowei
    Teng, Zhongming
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2020, 14
  • [24] An incremental principal component analysis for chunk data
    Ozawa, Seiichi
    Pang, Shaoning
    Kasabov, Nikola
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 2278 - +
  • [25] Incremental principal component analysis for image processing
    Kim, Yongkyu
    OPTICS LETTERS, 2007, 32 (01) : 32 - 34
  • [26] A fast encoding algorithm for vector quantization based on Principal Component Analysis
    Lee, Jiann-Der
    Chiou, Yaw-Hwang
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 1413 - 1416
  • [27] FAST RECURSIVE LEAST SQUARES LEARNING ALGORITHM FOR PRINCIPAL COMPONENT ANALYSIS
    Ouyang Shan Bao Zheng Liao Guisheng(Guilin Institute of Electronic Technology
    Journal of Electronics(China), 2000, (03) : 270 - 278
  • [28] Fast principal component analysis using fixed-point algorithm
    Sharma, Alok
    Pahwal, Kuldip K.
    PATTERN RECOGNITION LETTERS, 2007, 28 (10) : 1151 - 1155
  • [29] A Comparative Study of Multilinear Principal Component Analysis for Face Recognition
    Wang, Jin
    Chen, Yu
    Adjouadi, Malek
    2008 37TH IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, 2008, : 250 - 255
  • [30] Multilinear Principal Component Analysis Network for Tensor Object Classification
    Wu, Jiasong
    Qiu, Shijie
    Zeng, Rui
    Kong, Youyong
    Senhadji, Lotfi
    Shu, Huazhong
    IEEE ACCESS, 2017, 5 : 3322 - 3331